
1 Appendix1

1.1 Comparison to Offline DAU2

Within this paper we focus on mixing smaller frequencies together with larger frequencies. Prior3

work has identified that training deep q-learning on even one frequency can be challenging as fre-4

quencies become smaller [1]. To understand what portion of the mixing challenge is due to instabil-5

ity at smaller frequencies, as opposed to frequency inconsistencies, we implement an offline variant6

of Deep Advantage Updating (DAU). We replace the learned Q-values with advantage functions7

that have a limit as δt → 0. We try both the default DAU implementation and also an offline mod-8

ification of DAU where we add all of the additional CQL losses applied to the advantage function9

with a CQL alpha value of 5. On the FrankaKitchen environment, both DAU variants achieve a final10

performance of 0.0.11

The failure of DAU is likely explained by its incompatibility with the CQL objective. Recall that in12

the approximate advantage formulation of DAU, the value and advantage networks are updated with13

the following loss:14

Qi ← Vθ(si) + δt(Āψ(si, ai)−max
a

Āψ(si, a))

Q̃i ← riδt + (1− di)γδtVθ(si+1)

L = ||Qi − Q̃i||22

In practice Q̃i is a target network updated with Polyak averaging, so the effect of this loss in an15

offline setting is to minimize Āψ(si, ai) and maximize maxa Āψ(si, a)). This directly contradicts16

the CQL objective, which enforces pessimism on actions that maximize Q-values and optimism on17

actions within the replay buffer. We believe this conflict is why DAU fails. Further research is18

necessary to come up with a robust version of offline DAU. We’ll include these comparisons in the19

final version of the paper and discuss the applicability of DAU to the offline RL setting.20

1.2 Interpolation and Extrapolation of Learned Policies21

To study the robustness of the learned policies across a range of discretizations, we perform inference22

across a range of unseen discretizations for both the Kitchen and Pendulum environments. Table 123

shows that Adaptive N -step achieves reasonable performance when evaluated on new δt.24

Env Name In Training Data? δt Adaptive N-step

pendulum Yes 10 89.5 ± 8.1
No 9 86.7 ± 10.3
No 8 86.7 ± 10.3
No 7 100.0 ± 0.0
No 6 86.7 ± 10.3
Yes 5 92.9 ± 5.7
No 4 66.7 ± 25.8
No 3 100.0 ± 0.0
Yes 2 100.0 ± 0.0
Yes 1 87.5 ± 7.5

kitchen-complete-v0 No 45 15 ± 14.8
Yes 40 34.6 ± 8.7
No 35 28 ± 11.8
Yes 30 19.9 ± 7.2
No 25 2.2 ± 1.96

Table 1: AdaptiveN -Step maintains strong performance when interpolating across unseen δt and even exhibits
some degree of extrapolation to δt outside the range of the training data.

1

Env Name Policy Conditioning δt Adaptive N-step

kitchen-complete-v0 πδt=40(a|s) 40 48.3 ± 3.3
πδt=30(a|s) 40 21.1 ± 6.5
πδt=30(a|s) 30 16.6 ± 8.6
πδt=40(a|s) 30 11.7 ± 14.2

Table 2: When a policy is conditioned on a different frequency than is observed during evaluation, performance
drops. This suggests that Adaptive N -Step is able to learn to specialize to different frequencies.

1.3 Learning Different Policies for Different Frequencies25

One challenge with learning optimal policies for different frequencies is that that optimal policy for26

one frequency may not be optimal at another frequency. To understand if Adaptive N -Step differ-27

entiates between policies at different frequencies, we conduct an experiment where we condition28

on a different frequency than is observed during evaluation. Table 2 shows that performance drops29

for policies evaluated outside of the training frequency, suggesting that Adaptive N -Step is able to30

specialize to different frequencies with δt conditioning.31

1.4 Performance Curves by δt32

In this section, we provide performance curves broken down by δt for each task to understand how33

Adaptive N -Step impacts discretizations that have better data or are less stable to train.34

Pendulum. We plot performance by discretization on the Pendulum task in Figure 1. For every35

δt, Adaptive N -Step provides substantial improvement over naı̈ve mixing. Because pendulum is a36

sparse reward task with a simple state-action space, larger values of N should propagate value more37

quickly than Adaptive N -Step Returns. For example, the Adaptive N for δt = 0.005, 0.01, and38

0.02 is N = 4, 2, and 1, respectively. However, for δt = 0.005, performance declines with max N39

even though the value of N used for that discretization is unchanged. Likewise for δt = 0.01 and40

δt = 0.02, the value of N is not correlated with performance in that discretization. These results41

suggest that more than the absolute choice of N matters for performance.42

Figure 1: Pendulum performance during training for each δt.

Meta-World Door-Open.We plot performance by discretization on the Meta-World task in Figure 2.43

Within the door-open task, Adaptive N -Step returns improves the training stability on the smallest44

discretization δt = 1 without compromising final performance on coarser discretizations. In this45

setting naı̈ve mixing fails to stably learn a well-performing policy at the smallest discretization.46

Kitchen. We plot performance by discretization on the four FrankaKitchen tasks in Figure 3. Similar47

to Pendulum, the performance on FrankaKitchen is not fully explained by the absolute value of N48

chosen for each discretization. For δt = 30, the same value of N is used for Adaptive N -Step49

Returns and Max N -Step Returns, but Adaptive N still sees a performance gain. Using any N -step50

return formulation sees a significant improvement over Naı̈ve Mixing.51

1.5 Visualizing the Learned Q-Values52

We visualize how Adaptive N -Step Returns affect the quality of the learned Q-function.53

Pendulum. In Figure 4, we plot the Q-value over the complete state space of the Pendulum envi-54

ronment for each δt at the end of training. The x-axis is the angle and the y-axis is the velocity of55

2

Figure 2: Door-open performance during training for each δt.

Figure 3: Kitchen performance during training for each δt.

the pendulum. For each state, we measure the Q-value on the action predicted by the final policy.56

Intuitively, we expect a policy that attains high reward to predict larger Q-values along the lines57

y = x and y = −x, since the velocity of the pendulum should be proportional to its distance from58

the balance position.59

Both Naı̈ve Mixing and Adaptive N-Step converge to similar average Q-values by the end of train-60

ing, but Adaptive N -Step learns a cleaner Q-value over the state space. This suggests that even61

though the final Q-values are similar across discretizations with and without adaptive N -step, mix-62

ing data without N -step corrodes the quality of the learned Q-value63

0.005 0.01 0.02

Naı̈ve Mixing

0.005 0.01 0.02

Adaptive N-Step

Figure 4: We visualize the Q-values across the entire state-action space for each δt at the end of
training. The x-axis is the angle of the pendulum and the y-axis is the angular velocity. The quality
of the learned value function is corroded with Naı̈ve Mixing, but not with Adaptive N -step.

Meta-World Door-Open. In Figure 5, we plot the Q-value (middle) for the Meta-World door-64

open task at a discretization of 1 alongside images taken at regular intervals from the trajectory65

(top) and the reward attained by the agent (bottom). The Q-values learned with Naı̈ve mixing (left)66

experience a slight dip with task progress before diverging towards a large negative number. The67

Q-values learning with Adaptive N-Step (right) progress more closely with task progress and the68

policy is able to complete the task successfully.69

Kitchen. In Figure 6, we plot the Q-value (middle) for the Kitchen environment at a discretization70

of 40 alongside images taken at regular intervals from the trajectory (top) and the reward attained71

3

(a) (b)

Figure 5: We visualize both Q-values (blue and orange) for each step of the trajectory for the door
open task trained without (left) and with (right) adaptive n-step.

by the agent (bottom). On the left-hand side, we see that at the starting state, the Q-value trained72

with Naı̈ve Mixing predicts large values at the initial state and then diminishes as the robot moves73

farther from the interactive task elements. On the right-hand side, we see that, although the Q-value74

is slightly negative, it correlates well with attained reward. Towards the middle of the trajectory, it75

still attains a high reward as it moves closer to interactive task elements (i.e., back to the microwave)76

and continues to drop as the robot moves away from these elements at the end of the trajectory.77

1.6 Training and Evaluation Details78

All plots and performance numbers are averaged over 5 evaluation trajectories. All Naı̈ve Mixing79

and Adaptive N-Steps results are averaged over 5 seeds. All Individual Training and Max N-Step80

Results are averaged over 3 seeds. The plots in the appendix are presented with 95% confidence81

intervals and smoothed with a 1-D Gaussian filter with a standard deviation of 1.82

(a) (b)

Figure 6: We visualize both Q-values (blue and orange) for each step of the trajectory for the
FrankaKitchen environment trained without (left) and with (right) adaptive n-step.

4

References83

[1] C. Tallec, L. Blier, and Y. Ollivier. Making deep q-learning methods robust to time discretiza-84

tion. In International Conference on Machine Learning, pages 6096–6104. PMLR, 2019.85

5

	Appendix
	Comparison to Offline DAU
	Interpolation and Extrapolation of Learned Policies
	Learning Different Policies for Different Frequencies
	Performance Curves by t
	Visualizing the Learned Q-Values
	Training and Evaluation Details

