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This appendix will describe the design and implementation of the proposed contact-based grasp
pipeline in detail. We will first illustrate the details of contact point detection based on the TSDF
volume and the proposed contact-point network (CPN). Next, we will introduce the implementation
of the data generation process. Additional simulated experiments are conducted to have an in-depth
understanding of our work. The subsequent section provides the details of real-robot experiments,
including the setting of the workspace, control logic, and analysis of some failure cases. The visu-
alization of the object sets we use in this work and the sampled scenarios are provided in the last
section. The intermediate results for each module will also be visualized in this appendix to give a
more intuitive understanding of this work.

1 Contact Point Detection

1.1 Contact Point Sampling

Gaussian smoothing on TSDF volume. Due to the noise introduced by the vision sensor, the
reconstructed isosurface of the TSDF volume might be rugged, such that the surface normal cannot
represent the local feature of the object geometry. Thus it cannot be regarded as the potential grasp
vector. To eliminate this defect, we apply a spatial Gaussian filter to the TSDF volume before contact
point sampling. The output isosurface of the filtered TSDF volume is much smoother than that of
the original one. An example is shown in Figure 1.

(a) The stacked scene (b) TSDF without Gaussian filter (c) TSDF with Gaussian filter

Figure 1: Visualization of the TSDF volumes.

Details of sampling contact pairs. After the Gaussian smoothing operation, the Marching Cubes
algorithm [1] is performed on the TSDF volume to obtain the surface vertices, which are regarded
as one side of the contact pairs. The step size of Marching Cubes is set to 2, and the resulting
number of vertices is around 1000 to 8000, which is sufficient for covering the entire scene. The
corresponding surface normals are treated as the grasp vectors and used to guide the retrieval of
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Figure 2: Visualization of the estimated contact pairs. The first row shows all the contact pairs
sampled by the proposed method. And the second row visualizes the selected contact pairs after
grasp quality evaluation and collision checking.

other contact points. We uniformly sample 50 points in the inverse direction of the surface normal
in which the distance between the vertex and the last sampled point is 0.08m, i.e., the maximal width
of the gripper. Moreover, we select as the retrieved contact points those signed distance values are
negative and the subsequent points turn to be positive. Examples are shown in Figure 2.

1.2 Contact Point Network
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Figure 3: Contact-point network. The values in the tuple of the ConvBlock3D stand for the number
of input and output channels, stride, and two flags specifying whether to use Group Normaliza-
tion [2] and Leaky ReLU or not. The values in the tuple of the MLP block stand for the number of
input dimensions for the layers in the block.

Network architecture. As shown in Figure 3, the proposed contact-point network is composed of
two main modules, the 3D convolutional layer and the MLP layer. The input of the network includes
the TSDF volume and the voxel indices of the contact pairs. To obtain the 3D features for the contact

2



z

x
g

0a

ia

aN
a

z

x
g

0a

ia

aN
a

z

x
g

0a

ia

aN
a

Figure 4: Potential approach vectors and the selected vector.

pairs, we use their indices to retrieve the corresponding feature vectors from the 3D feature maps
extracted by the convolutional blocks. Since the indices can only be applied to the original TSDF
volume, we should downsample them according to the accumulated stride used for each layer before
extracting their features. Moreover, because the indices might not exactly point to a specific feature
vector, trilinear interpolation is also leveraged to compute an approximate feature from the nearest
ones. After feature extraction, the retrieved features of each contact pair will be sent to two MLP
blocks. The final output is a single value for each contact pair representing the estimated grasp
quality of the given contact candidate.

Hyper-parameters. During the course of training, we use the cross-entropy loss function and Adam
optimizer with the learning rate and decay weight set to 0.0005 and 0.0005 to guide the training of
the proposed CPN. The batch size is set to 24, and the number of epochs is 50. The training process
is conducted on a server with two NVIDIA 3090 GPUs and an Intel Core i9-10920x CPU. The model
is run on a PC with an NVIDIA 2080ti GPU and an Intel Core i9-12900K CPU during real-robot
experiments.

1.3 Approach Vector Selection

Since the proposed CPN only predicts the grasp quality for the sampled contact pairs, there are
no explicitly angle discretizations proposed by [3, 4]. Therefore, we can manually determine the
number of approach vectors Na and perform collision checking with the sampled poses, which is
more flexible than previous methods. In the implementation, we first select the top 3‰ contact pairs
with their grasp qualities estimated by the CPN. We then uniformly sample 32 approach vectors on
the orthogonal subspace of each grasp vector. An example of approach vector sampling is shown in
Figure 4. Finally, we select the collision-free poses by projecting the vertices of the gripper mesh
model into the TSDF volume and checking the number of voxels having negative values. To avoid
no solution being found, we select the top 1‰ of poses that have the maximal number of positive
voxels.

1.4 Pipeline of Contact-based Grasping

Based on the TSDF volume and CPN, we can create a closed-loop grasping pipeline. At each
step, the sampled contact points with grasp vectors are generated by executing Marching Cubes
on the TSDF volume. To find contact points on the opposite side, we explore potential contacts
in the inverse direction of the grasp vectors guided by the antipodal grasp rule. With the gripper
mesh model and the TSDF volume, the collision-free gripper poses can be obtained by conducting
collision checking on the sampled poses of the top 3‰ high-quality contact pairs. After NMS
operation on the collision-free poses, an estimated optimal gripper pose can be obtained such that
we can control the robot arm with the corresponding command. During the course of moving the
robot, the vision sensor can capture different visual observations, enriching the information of the
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Figure 5: Visualization of grasp analysis on a single mesh. Column 1: contact points with normal.
Column 2: all of the sampled contact point pairs. Column 3: positive contact pairs. Column 4:
negative contact pairs.

scene in the TSDF volume and thus improving the performance of contact point detection. All these
modules can be implemented with GPU acceleration such that the entire pipeline can be executed
efficiently in a closed-loop manner.

In implementation, all the modules are performed on robot operating system (ROS). Specifically,
TSDF fusion, CPN inference, and velocity controller are executed on ROS nodes individually, and
each module requests the messages based on ROS service or message. For example, the TSDF
node not only continuously updates the TSDF volume by integrating the latest frame of depth map
with the current camera pose into the volume, but also provides a ROS service by which the TSDF
node will send the volume data to the CPN node when it requests a volume. Similarly, each time
the CPN node obtains a volume data, pose sampling, detection, and post-processing are conducted
instantly. And the output pose will be published. For the velocity controller, it will keep updating
the estimated pose and generating the velocity command based on the latest target.

2 Data Generation

2.1 Grasp Analysis on Single Mesh

In this work, we perform antipodal grasp analysis and label validation on 191 primitive-shaped ob-
jects. The objects include spheres, cubes, ellipsoids, cylinders, and building blocks released by [5].
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An overview of the training objects is shown in Figure 13. Since the number of vertices of the
meshes might be sparse (e.g., a square face of a cube mesh may contain only two triangle faces and
four vertices, which is not enough for this task. To have a sufficiently large number of vertices that
are uniformly located at the object surface, we first perform subdivision on the meshes to increase
the number of vertices without changing the original shape. The output meshes with uniformly
dense vertices will be leveraged for antipodal grasp analysis. Visualization of grasp labels of some
objects is shown in Figure 5.

2.2 Scene Construction

Noise model for rendered depth map. In this paper, we use the noise model proposed in [6] to
add axial and lateral noise to the synthesized depth maps. Given each pixel containing its image
position pi, range value zi and the corresponding normal vector ni, the lateral shift of each pixel
is first sample from a Gaussian distribution, which is denoted as ∆l,i ∼ N (0, σ2

l,i), where σl,i =

0.8 + 0.035 · θi/(π/2 − θi), and θi represents the angle between the camera optical axis and the
surface normal of the captured point at pixel i. Next, we shift each pixel by adding the sampled
lateral noise to the original pixel position, which obtains p̂i = pi + ∆l,i. Similarly, we then sample
axial noise based on the axial noise model proposed in [6], which is defined as ∆a,i ∼ N (0, σ2

a,i),
where σa,i = 0.0012 + 0.0019(zi − 0.4)2 and zi is the range of the current pixel i. And thus the
noisy range data will be ẑi = zi + ∆a,i. Finally, we randomly set the range value to 0 with the
probability of (0, 0, 1)Tni = ni,3, which is exactly the cosine of the angle between the z axis and
the normal vector. Sample noisy depth maps are shown in Figure 6.

Figure 6: Visualization of noisy depth maps. First row: color maps. Second row: colorized depth
maps without noise. Third row: noisy depth maps.

Visualization of grasp labels. Figure 7–10 visualize the positive (row 1) and negative (row 2)
contact pairs on scenes that have different numbers of objects stacked together. The contact pairs
are generated from the grasp analysis step, and only the pairs whose points are sufficiently close to
the reconstructed surface of the TSDF volume will be used as the ground truth.

5



Figure 7: Reconstructed scene with labelled contact points (5 objects).

Figure 8: Reconstructed scene with labelled contact points (10 objects).

3 Simulation Experiments

Grasp success rate on EGAD [7]. To study the proposed method in-depth, we further perform
grasp experiments on the EGAD object dataset. The EGAD object sets, generated by evolutionary
algorithms, are geometrically diverse in terms of grasp difficulty and shape complexity, which allows
them to better reflect the features and limitations of the grasping methods. Similar to EGAD [7], we
set the maximal width of the gripper to 0.07m, and there is only a single object randomly placed
at the workspace for each grasp attempt. We perform 1000 grasp trials for each evaluation object
on the Isaac Gym simulator. A snapshot of the 3D-printed evaluation object set provided in the
EGAD paper [7] is shown in Figure 11. The average success rate is also reported in Figure 11.
These experiments reveal the following characteristics of the proposed pipeline: 1) Regardless of
the levels of grasp difficulty and shape complexity, our method can achieve significant performance
on most objects. 2) From the results of objects F0, G2–G4, and G6, we can see that it is difficult
for the contact-based method to handle flat or slim objects. Due to the large voxel length and the
truncated margin set in the TSDF volume, the shape information may be missing during the TSDF
fusion, which leads to no contact points being found. Such cases happen more frequently when
performing real-robot experiments, and we will discuss this problem in the subsequent section.

Time efficiency. We evaluate the time efficiency by counting the average inference time of the CPN
and the average planning time of the entire pipeline on scenes with 5, 10, 15, and 20 objects piled
in the workspace. The definition of inference time and planning time are the same as those given
in [4]. The experiments are run on a PC with an NVIDIA 2080ti GPU and an Intel Core i9-12900K
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Figure 9: Reconstructed scene with labelled contact points (15 objects).

Figure 10: Reconstructed scene with labelled contact points (20 objects).

CPU. The results are listed in Table 1. Though using the 3D FCN and the TSDF volume with
large resolution, the CPN can still achieve around 100 Hz during inference. Moreover, executing a
pipeline once has an efficiency of at least 20 Hz, which is fast enough for closed-loop grasping.

Table 1: Computation Times

5 objects 10 objects 15 objects 20 objects
Inference time (ms) 10.02 10.11 10.06 9.92
Planning time (ms) 38.71 45.72 44.03 46.80

4 Real-robot Experiments

Setting of the workspace. To demonstrate the effectiveness of the proposed method in a physical
environment, we perform clutter removal experiments on four types of objects using the Franka
Panda robot arm. We use the RealSense D435 as the vision sensor to capture the depth maps,
and attach it to the end-effector using the mounter released by [8]. Sample cluttered scenes of the
experiments are shown in Figure 17.

Control logic. To achieve smooth closed-loop control, all modules, including TSDF fusion, network
inference, and velocity control, are implemented in separate ROS nodes. In particular, we divide an
entire grasp attempt into three parts. We first move the robot based on the commands generated by
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Figure 11: Snapshot of 3D-printed EGAD object set [7] and the average grasp success rates.

the velocity controller, which is defined as

vt = λ(JT
t Jt)

−1JT
t [(p̃gt − pt)T , rTt ]T , (1)

where p̃gt and pt are the estimated target position and current position of the gripper, and rt is the
difference between the target and current orientations. To make the sensor focus on the workspace
during the movement of the robot arm, we make the z-axis of the target orientation point towards
the bottom center of the workspace. When the end-effector reaches the pre-defined minimal height,
the velocity controller keeps working while the target position and orientation switches to a pre-
approach pose which is 7cm upwards of the target grasp pose in the approaching direction. When the
gripper reaches the pre-approach pose, we set r = 0 and move the robot to the target grasp pose and
execute the grasp attempt. Through this piecewise setting, the generated trajectory rarely collides
with the objects during the motion planning. However, the controller cannot avoid the problem
of exceeding the joint limits. When such cases happen, we have to neglect the grasp attempt and
conduct another trial.

Failure cases. As mentioned in the paper, the performance of the proposed methods highly depends
on the precision of the TSDF volume. Due to the measurement error and the noise introduced by
RealSense D435, and the sharp-edge effect of the TSDF volume, the reconstructed scene might be
distorted, especially on flat or slim objects. Some failure cases are presented in Figure 12, where we
can see that part of the cups wall is missing during the reconstruction. One reason might be that the
truncated margin is larger than the thickness of the wall. Moreover, as shown in the third instance,
there is only a tiny discrepancy in the depth between the background and the object. Such difference
is unclear for the TSDF volume due to its low resolution, and it is difficult for the consumer-level
sensor to capture this difference, which leads to no contact candidates being found. The failure cases
imply that the proposed method currently cannot handle tiny or flat objects. A direct solution is to
use the TSDF volume with a higher resolution or propose heuristics to guide the movement of the
robot arm to have a more comprehensive view of the target grasp region. Alternatively, we could
replace the Marching Cubes module with learning-based methods to infer the contact points with
their contact normals. We treat this possible as future work.

Figure 12: Failure cases.
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5 Object Sets and Sampled Scenes

Figure 13: 191 primitive-shaped objects.
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Figure 14: 1000 Procedual objects.
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Figure 15: 129 Kit objects.
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Figure 16: 32 real objects.
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Figure 17: Sampled scenes. Row 1: single object. Row 2: 5 objects. Row 3: 10 objects. Row 4: 15
objects. Row 5: 20 objects. Row 6: real objects.
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