
Supplementary Materials: Robust Trajectory
Prediction against Adversarial Attacks

Yulong Cao∗1,2, Danfei Xu2,3, Xinshuo Weng2, Z. Morley Mao1, Anima Anandkumar2,4,
Chaowei Xiao2,5, and Marco Pavone2,6

1University of Michigan
2NVIDIA

3Georgia Institute of Technology
4California Institute of Technology

5Arizona State University
6Stanford University

A Method and Implementations

A.1 Adversarial Attack on Trajectory Prediction

Latent Attack and Context Attack. Noticed that, besides Deterministic Attack introduced in the
main paper, there are also two other less intuitive attacks. Since the prediction Ŷ is dependent on
posterior distribution qφ(Z|X,Y) and conditional variable f(X), we can construct attacks based on
that. Latent attack aims to increase the error of estimating qφ(Z|X,Y), which is formulated as:

δ = argmax
δ

KL(qφ(Z|Y,X) ‖ qφ(Z|Y,X + δ)). (S1)

Context attack aims to increase the error of encoding the conditional variable f(Z), which is formu-
lated as:

δ = argmax
δ

d(f(X), f(X + δ)), (S2)

where d is a distance function (e.g., L2 norm). However, latent attack and context attack are effective
due to two reasons. First, they are exploiting the vulnerability of a partial model. For example,
latent attack only exploits the posterior estimation qφ(Z|X,Y) and context attack only exploits the
conditional encoder f(X). Second, these attacks aim for a different goal. For the latent attack
and context attack, the objectives are set for finding adversarial perturbations that maximize the
difference of generated posterior distribution/context given X and X + δ, due to lacking ground
truth for intermediate latent variables. However, for the sample attack, the objective is directly
set for maximizing the prediction errors from the ground truth (future trajectories), which is more
effective.

Adversarial attack on consecutive frames. In order to fool a planner in a closed-loop manner to
make consistent wrong decisions, we need to conduct adversarial attacks on consecutive frames. To
attack Lp consecutive frames of predictions, we aim to generate the adversarial trajectory of length
H+Lp that uniformly misleads the prediction at each time frame. To achieve this goal, we can easily
extend the formulation for attacking single-step predictions to attack a sequence of predictions,
which is useful for attacking a sequence of decision made by AV planning module. Concretely,
to generate the adversarial trajectories for Lp consecutive steps of predictions, we aggregate the
adversarial losses over these frames. The objective for attacking a length of H + Lp trajectory is:∑

t∈[−Lp,...0]

Ladv(Xadv(t),Y(t)), (S3)

where Xadv(t),Y(t) are the corresponding X + δ,Y at time frame t.
∗Work done during an internship at NVIDIA

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

A.2 Adversarial Training on Generative Models

Challenges. One challenge that hinders the adversarial training process is the noisy conditional
data distribution disturbing the training process. One hypothesis we mentioned in the main pa-
per is, the context encoding can magnify the bounded perturbation δ on history trajectory X to an
unbounded perturbation on the conditional variable C = f(X + δ), during the training process.

Lemma A.1 For a neural network f which is not bounded on Lipschitz constant during the training
procedure, given any constant η and an input X, there exists a pair (δ, f), that satisfies

‖ f(X + δ)− f(X) ‖≥ η.

Lemma A.1 can be easily derived by the definition of Lipshitz constant. Lipshitz constant L is
defined as

L := sup
‖ f(X + δ)− f(X) ‖

‖ δ ‖
.

If L is not bounded, ‖f(X+δ)−f(X)‖
‖δ‖ is not bounded and so is ‖ f(X+ δ)−f(X) ‖ given a bounded

δ. This means that, a bounded perturbation δ can potentially be magnified to be noisier on encoded
conditional variable C = f(X + δ).

Analysis. In order to provide a quantitative analysis of the degeneration degree from conditional
generative model to generative model (e.g., CVAE to VAE) with respect to the noise level, we pro-
pose a method to estimate the correlation between the degeneration and the noise level. Specifically,
we trained a classifier with a 2-layer CNN achieving 99% accuracy on MNIST dataset. Then, given
a conditional variable (the upper left quarter of an image of digit y), we generate images with the
conditional generative models and use the classifier to calculate the confidence of the generated im-
ages labeled as digit y. We calculate the average confidence of 10 generated images on all 10,000
images in the MNIST test data set. The lower the score means the weaker the correlation between
the generated images with the given conditions, or the stronger correlation between the degenera-
tion and the noise level. We also provide visualization examples of generated images from models
trained using data with different level of noises in Figure A and Figure B. We can see that, with the
noise level increases, the generated images are less dependent on the conditional variable (i.e., not
being the same digit). In the extreme case of high level noise, for example when p = 0.9, the model
generates images solely depends on the random prior value it samples and generates the similar im-
ages for each row. We can also see that, the adversarial noises are more effective compared to the
salt and pepper noise. With a small amount of noise (i.e., ε = 0.1), it can degenerate the conditional
generative model to a generative model (i.e., CVAE to VAE here).

A.3 Data Augmentation with Dynamic Model

For the data augmentation strategy A, we use a kinematic bicycle model [1] as our dynamic model
to generate realistic trajectories that can be driven in the real world. Representing the behavior
of actors as kinematic bicycle model trajectories allows for physical feasibility and fine-grained
behavior control. To generate realistic trajectories, we first parameterize the trajectory S = {st}T0
as a sequence of kinematic bicycle model states st = {pt, κt, at}, where p represents the position,
κ represents the trajectory curvature, and a represents the acceleration. Then, trajectories can be
generated by controlling the change of curvature κ̇t and the acceleration at over time, and using
the kinematic bicycle model to update corresponding other states for each timestamp. To generate
diverse trajectories, we set the objectives as biasing the trajectories to a given direction (e.g. forward,
backward, left and right), while not colliding with other agents. To that end, we optimize a carefully-
designed objective function Ldyn over the control actions, i.e. κ̇t and at for each agents. More
specifically, the objective function consists of two components: Ldyn = Ld +γLcol , where Ld is the
deviation objective loss, Lcol is the collision regularization loss, and γ is a weight factor to balance
the objectives. In each scene, we randomly pick a deviation objective loss Ld from the set {moving
forward, backward, left, right} for each agent. More specifically, the deviation objective loss Ld is
formulated as

Ld = (X−Xaug) d̄,

2

p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

Figure A: Visual examples of images generated from models trained with different levels of salt and
pepper noises.

ε = 0 ε = 0.01 ε = 0.03 ε = 0.05 ε = 0.1

Figure B: Visual examples of images generated from models trained with different levels of adver-
sarial noises.

where Xaug represents the generated trajectories by perturbing the trajectories in the dataset and d̄
represents the unit vectors for the target deviation directions in the set of {moving forward, back-
ward, left, right}. And the collision regularization loss Lcol is formulated as

Lcol(Xaug,X) =
1

n− 1

n−1∑
i6=aug

1

‖Xaug − Xi‖+ 1
,

We also clip the maximum deviation of the positions so that the trajectories are constrained to be in
the lane.

A.4 MPC-based Planner

Planner. In this work, to demonstrate the explicit consequences of the adversarial trajectory, we
implement a simple yet effective planner that uses conformal lattice [2] for sampling paths and
model predictive control (MPC) [3] for motion planning. We call this planner MPC-based planner.

Planning strategy. In this work, we consider a closed-loop planning strategy. Though for the
closed-loop planning we have to replay the ground truth trajectories of other agents, we do notice
reduced collisions and driving off-road consequences compared to open-loop planning and consider
the closed-loop planning fashion meaningful.

3

B Experiment and Results

B.1 More details on Experimental Setup

Models. Since the adversarial training process is computationally heavy, we use a lightweight
version of the AgentFormer in the analysis and ablation studies, namely mini-AgentFormer. In
mini-AgentFormer, we (1) remove the map context and (2) reduce the transformer layer from two
layers to a single layer. We report the final results for all three models: AgentFormer (AF), mini-
AgentFormer (mini-AF) and Social-GAN.

Evaluating impacts to downstream planners. To demonstrate the impacts to downstream plan-
ners, we generate adversarial examples for consecutive frames on traffic scenarios in nuScenes
dataset. With the MPC-based planner plugged in, we can demonstrate the consequences of the
adversarial attacks on trajectory prediction models. We use the prediction results of AgentFormer
trained with different methods due to its best performance among the three models. As we men-
tioned in the main paper, we show 10 cases where the AV collides with other vehicles under attack.
We visualize 3 scenarios in the demo video of the supplementary material.

Hyperparameter choices. To select the hyperparameter β, we conduct adversarial training with
different β for controlling the regularization. The results are shown in Table A. We find that β = 0.1
achieves a good trade-off between robustness and clean performance. Therefore, we use β = 0.1
for the experiments in the rest of the paper.

β 0.01 0.1 0.5 1 10

ADE 2.19 2.29 2.37 2.39 2.57
Robust ADE 3.91 3.76 3.80 3.78 3.79

Table A: Ablation study on different regularization loss weights.

To select the PGD attack step for evaluation, we conduct ablation experiments to show the conver-
gence of different PGD steps. As shown in Figure C, the attack converges at 20 steps. Thus, we
select the 20-step PDG attack for the experiments in this paper

Figure C: PGD step convergence for attack
convergence with Deterministic Attack. At-
tack converges around 20 steps.

Figure D: PGD step sizes ablation study. We
find that except for 1 step PGD adversar-
ial training, adversarial training with all the
other step sizes achieves similar results.

To select the PGD attack steps of adversarial training, we conduct experiments on adversarially
training the model with different PGD steps. Since we are using PGD attack with adaptive step
sizes [4], attacks with any PGD steps are able to fully utilize the attack capability controlled by ε. In
Figure D, we show that except for the 1-step PGD attack, all other steps show the similar robustness
and clean performance.

Evaluation with existing attack [5]. We also evaluate the robust trained model with the existing
search attack [5]. The results are shown in the Table B. We show that the existing attack increased

4

less prediction error (e.g., 78% less for ε = 1.0 on AgentFormer trained with clean data) due to the
additional constraints of the attack. We demonstrate that the proposed RobustTraj achieves both best
robustness and least clean performance degradation, compared to the baselines.

Table B: Evaluation results of the proposed methods and existing methods on the search attack
proposed by Zhang et al. [5]. mini-AF, AF and SGAN represent mini-AgentFormer, AgentFormer,
and Social-GAN respectively. DA represents data augmentation with adversarial examples.

Model Method ADE Robust ADE FDE Robust FDE
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 2.05 2.05 3.24 4.61 4.41 4.41 6.19 8.02
Naı̈ve AT 2.75 2.78 3.38 4.46 5.92 5.89 6.97 8.17
DA + Train-time Smoothing 2.41 2.39 3.28 4.04 5.05 5.09 6.36 8.33
Detection + Test Smoothing 2.31 2.28 3.26 4.41 4.96 4.91 6.41 8.27
RobustTraj 2.14 2.11 2.50 2.51 4.36 4.35 5.07 5.11

AF

Clean 1.86 1.86 2.62 3.34 3.89 3.89 5.22 6.72
Naı̈ve AT 2.52 2.56 2.86 3.52 5.18 5.32 5.68 6.75
DA + Train-time Smoothing 2.17 2.13 2.72 3.44 4.59 4.51 5.38 6.17
Detection + Test Smoothing 2.08 2.03 2.58 3.29 4.43 4.26 5.49 6.22
RobustTraj 1.91 1.95 2.14 2.21 4.02 4.01 4.31 4.31

SocialGAN

Clean 4.80 4.80 6.45 8.08 5.52 5.52 7.78 11.12
Naı̈ve AT 6.43 6.55 6.99 8.66 7.60 7.53 8.98 10.54
DA + Train-time Smoothing 5.63 5.61 6.42 8.01 6.44 6.41 8.34 9.88
Detection + Test Smoothing 5.35 5.37 6.34 8.72 6.12 6.07 7.77 10.21
RobustTraj 4.95 5.07 5.01 5.49 5.72 5.73 6.68 6.40

B.2 Main Results

We evaluate our methods and existing methods with four metrics in Table C. We observe that the
results are consistent where the proposed RobustTraj achieves the best results compared to the base-
lines and existing methods [5].

In the demo video, we visualized scenarios where adversarial attacks on trajectory prediction models
lead to collisions on both model trained on clean data and model trained with an existing defense [5],
while model trained with RobustTraj is able to avoid the collisions.

5

Table C: Additional evaluation results of the proposed methods and existing methods. mini-AF, AF
and SGAN represent mini-AgentFormer, AgentFormer, and Social-GAN respectively. DA repre-
sents data augmentation with adversarial examples.

Model Method ADE Robust ADE FDE Robust FDE
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 2.05 2.05 6.86 11.53 4.41 4.41 13.08 20.15

Naı̈ve AT 2.75 2.78 5.44 9.20 5.92 5.89 10.13 15.78
DA 2.31 2.32 5.54 9.32 5.01 4.92 10.09 15.77
Train-time Smoothing 3.14 3.07 5.67 9.31 6.77 6.61 10.51 17.48
Test-time Smoothing 2.97 3.07 4.96 8.50 6.49 6.31 9.25 14.13
DA + Train-time Smoothing 2.41 2.39 5.48 9.00 5.05 5.09 10.23 16.87
Detection + Test Smoothing 2.31 2.28 5.91 9.85 4.96 4.91 11.49 17.57
RobustTraj 2.14 2.11 3.69 3.82 4.36 4.35 7.10 7.59

AF

Clean 1.86 1.86 5.09 8.57 3.89 3.89 9.42 14.41

Naı̈ve AT 2.52 2.56 3.81 6.81 5.18 5.32 7.11 10.76
DA 2.10 2.08 4.35 7.22 4.33 4.38 8.08 12.15
Train-time Smoothing 2.11 2.13 4.19 6.79 4.40 4.46 8.01 11.13
Test-time Smoothing 2.40 2.41 4.43 7.44 5.02 4.99 8.23 12.47
DA + Train-time Smoothing 2.17 2.13 4.14 6.62 4.59 4.51 7.85 11.00
Detection + Test Smoothing 2.08 2.03 4.45 7.59 4.43 4.26 8.01 12.74
RobustTraj 1.91 1.95 2.73 2.86 4.02 4.01 5.22 5.48

SGAN

Clean 4.80 4.80 10.52 20.15 5.52 5.52 15.60 24.79

Naı̈ve AT 6.43 6.55 8.34 14.63 7.60 7.53 13.71 17.93
DA 5.41 5.40 8.85 17.25 6.16 6.21 13.33 20.83
Train-time Smoothing 5.50 5.47 8.74 16.51 6.27 6.31 14.03 19.48
Test-time Smoothing 6.16 6.17 9.05 17.42 7.14 7.07 13.52 21.81
DA + Train-time Smoothing 5.63 5.61 8.60 16.14 6.44 6.41 13.82 19.08
Detection + Test Smoothing 5.35 5.37 9.28 17.39 6.12 6.07 13.36 21.59
RobustTraj 4.95 5.07 5.20 6.94 5.72 5.73 8.97 8.89

Model Method MR Robust MR ORR Robust ORR
0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

mini-AF

Clean 0.33 0.33 0.77 0.93 0.08 0.08 0.28 0.45

Naı̈ve AT 0.45 0.45 0.60 0.70 0.11 0.10 0.22 0.34
DA 0.37 0.38 0.61 0.72 0.09 0.09 0.22 0.35
Train-time Smoothing 0.50 0.50 0.66 0.79 0.12 0.12 0.22 0.38
Test-time Smoothing 0.48 0.50 0.56 0.65 0.11 0.11 0.20 0.32
DA + Train-time Smoothing 0.39 0.40 0.65 0.77 0.09 0.09 0.22 0.37
Detection + Test-time Smoothing 0.37 0.38 0.69 0.81 0.09 0.09 0.25 0.41
RobustTraj 0.34 0.36 0.54 0.54 0.08 0.08 0.10 0.11

AF

Clean 0.29 0.29 0.66 0.88 0.04 0.04 0.16 0.30

Naı̈ve AT 0.39 0.38 0.51 0.69 0.06 0.06 0.13 0.22
DA 0.32 0.32 0.56 0.74 0.05 0.05 0.14 0.26
Train-time Smoothing 0.33 0.33 0.56 0.71 0.05 0.05 0.13 0.25
Test-time Smoothing 0.37 0.37 0.58 0.77 0.05 0.05 0.14 0.26
DA + Train-time Smoothing 0.33 0.33 0.54 0.70 0.05 0.05 0.13 0.24
Detection + Test-time Smoothing 0.32 0.33 0.59 0.76 0.04 0.05 0.14 0.27
RobustTraj 0.29 0.31 0.46 0.51 0.04 0.04 0.05 0.07

SocialGAN

Clean 0.40 0.40 0.85 0.99 0.14 0.14 0.52 0.60

Naı̈ve AT 0.53 0.53 0.63 0.77 0.19 0.19 0.39 0.44
DA 0.44 0.44 0.72 0.85 0.16 0.16 0.44 0.51
Train-time Smoothing 0.45 0.45 0.67 0.82 0.16 0.16 0.42 0.50
Test-time Smoothing 0.51 0.51 0.74 0.85 0.19 0.19 0.45 0.52
DA + Train-time Smoothing 0.47 0.46 0.66 0.81 0.17 0.17 0.41 0.49
Detection + Test-time Smoothing 0.45 0.44 0.74 0.89 0.16 0.16 0.46 0.53
RobustTraj 0.41 0.42 0.60 0.62 0.15 0.15 0.24 0.29

6

References
[1] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle. The kinematic bicycle model: A consistent

model for planning feasible trajectories for autonomous vehicles? In 2017 IEEE Intelligent Vehicles
Symposium (IV), pages 812–818, 2017. doi:10.1109/IVS.2017.7995816.

[2] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee. Motion planning for autonomous driving with
a conformal spatiotemporal lattice. In 2011 IEEE International Conference on Robotics and Automation,
pages 4889–4895. IEEE, 2011.

[3] E. F. Camacho and C. B. Alba. Model predictive control. Springer science & business media, 2013.

[4] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-
free attacks. In International Conference on Machine Learning, pages 2206–2216. PMLR, 2020.

[5] Q. Zhang, S. Hu, J. Sun, Q. A. Chen, and Z. M. Mao. On adversarial robustness of trajectory prediction
for autonomous vehicles. arXiv preprint arXiv:2201.05057, 2022.

7

http://dx.doi.org/10.1109/IVS.2017.7995816

	Method and Implementations
	Adversarial Attack on Trajectory Prediction
	Adversarial Training on Generative Models
	Data Augmentation with Dynamic Model
	MPC-based Planner

	Experiment and Results
	More details on Experimental Setup
	Main Results

