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Through a series of variants and generalization studies, our additional results presented here high-
light that a) CAtNIPP has natural scalability to various graph sizes even beyond the scale of the
training discretization, b) increasing the graph fineness and number of sampled trajectory gener-
ally leads to a higher-quality solution at the cost of more computing time and memory usage, and
c) CAtNIPP can robustly generalize to other drastically changed Gaussian and even non-Gaussian
mixture distributions from training environments, while maintaining its improved performance over
other IPP planners.

A Variants Analysis

Table 1: Comparison between different CAtNIPP variants (10 trials on 30 instances for each
budget). Tr(P) is the average covariance matrix trace after running out of budget (standard deviation
in parentheses). T(s) is the average total planning time in seconds.

Method Budget 6 Budget 8 Budget 10 Budget 12
Tr(P) T(s) Tr(P) T(s) Tr(P) T(s) Tr(P) T(s)

g.(200) 20.35(±6.50) 0.30 8.46(±2.90) 0.35 4.49(±1.38) 0.42 8.46(±30.60) 0.41
g.(400) 22.67(±6.60) 0.45 7.70(±3.37) 0.53 3.81(±1.37) 0.78 2.53(±1.18) 0.88
g.(600) 21.43(±5.40) 0.76 7.62(±2.99) 1.07 3.94(±1.30) 1.34 2.49(±1.00) 1.70
g.(800) 22.86(±6.42) 1.23 7.72(±2.77) 1.68 3.97(±1.46) 2.20 2.70(±1.18) 2.52

ts.(4) 20.19(±3.88) 90.31 7.04(±1.44) 123.56 3.82(±0.61) 158.44 2.52(±0.41) 194.97
ts.(8) 19.29(±3.64) 158.93 6.84(±1.44) 215.76 3.72(±0.64) 275.59 2.52(±0.41) 339.72
ts.(16) 18.36(±3.18) 295.48 6.36(±1.18) 402.50 3.69(±0.68) 512.90 2.41(±0.38) 627.27

Table 1 shows the performance of different greedy variants of CAtNIPP on different-sized graphs,
as well as the effect of different number of samples for our sampling-based variant on fixed-sized
(400-nodes) graphs. We first note that our trained model naturally scales to larger graphs. Intuitively,
using a more complex graph will improve solution quality, since it makes the planned trajectory
more fine-grained. However, at the same time the trajectory space also grows exponentially with
this fineness. Despite this, our greedy variants keep solving the IPP in less than a few seconds
due to their learning based nature, while the computing time of CAtNIPP only increases linearly
with the budget constraint and graph size. Note that we do not include the time for computing the
minimal cost to the destination from each node, since these costs can be pre-computed offline and
do not require re-computation if the route graph is unchanged for different IPP instances (for 200,
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Figure 1: True interest maps in our different generalization evaluation cases. From left to right:
G1/G2 - Gaussian mixture with more/fewer peaks but smaller/larger variance compared to training
environments, G3 - uniform distribution, NG1 - mixture of inverse square decay functions when
ri > ri0, NG2 - mixture of linear decay functions, NG3 - mixture of random rectangles.

Table 2: Generalization capability to different ground truth distributions (10 trials on 30 in-
stances for budget 10). Numbers are the average covariance matrix trace after running out of budget
(standard deviation in parentheses). Note that despite some lacks of rigor for non-Gaussian distri-
butions, here we still adopt covariance matrix trace as our metric as it reveals the confidence level of
our belief.

Method Case G1 Case G2 Case G3 Case NG1 Case NG2 Case NG3

RAOr 6.40(±3.07) 5.57(±2.37) 15.32(±8.96) 11.21(±3.48) 4.68(±2.55) 4.83(±2.74)
CMA-ES 6.64(±4.22) 5.95(±3.32) 11.63(±4.55) 12.61(±4.44) 4.34(±2.93) 4.95(±3.69)
g.(400) 4.08(±1.40) 3.77(±1.44) 9.19(±1.55) 9.30(±2.51) 2.60(±1.06) 2.93(±1.79)
ts.(4) 3.76(±1.22) 3.38(±1.26) 8.91(±1.38) 8.70(±2.43) 2.40(±1.09) 2.62(±1.33)

400, 600 and 800 nodes graphs, computing the minimal cost of all nodes requires 0.8s, 4.5s, 14.0s,
and 31.4s respectively). Trajectory sampling variants exhibit improved solution quality over greedy
variants (10% better in average). However, the computing time of trajectory sampling variants is
more than one order of magnitude longer than greedy variants and close to non-learning IPP solvers.
Nevertheless, we note that trajectory sampling could be implemented as an anytime algorithm, which
makes it very appealing for many real-world applications.

B Generalization Analysis

Since the ground truth is commonly represented as a mixture of Gaussian for its nice mathemat-
ical properties, the majority of IPP solvers rely on Gaussian Processes as an approach of vicinity
interpolation. However, some spatial distributions that consist of point source (e.g., electric field
strength, radiation intensity, sound level, etc.) decay as the inverse square of the distance. There-
fore, we evaluate CAtNIPP on a number of handcrafted scenarios where the parameters of Gaussian
mixture significantly differs from the environments seen at training, and also test its compatibility
with non-Gaussian distributions.

Figure 1 shows the ground truth maps considered, featuring either Gaussian mixtures with different
parameter set, different decay functions, or even random rectangles. Nonetheless, we find that the
isotropic fixed kernel that we adopted during both training and evaluation is still able to yield a
good approximation of the true interest map, and highlights CAtNIPP’s generalization capability to
various kind of ground truth distributions including Gaussian (case G1-G3) and non-Gaussian (case
NG1-NG3) mixture models, as shown in Table 3. Interestingly, we find that none of these cases
lead to CAtNIPP’s failure, while still showing that CAtNIPP outperforms other baselines by a large
margin, without any retraining.

Table 3: Ablation study of CAtNIPP WITHOUT encoder. Tr(P) is the average covariance matrix
trace after running out of budget (standard deviation in parentheses).

Method Budget 6 Budget 8 Budget 10

g.(800) 44.01(±28.37) 18.40(±13.48) 11.80(±11.37)
ts.(4) 29.88(±14.80) 9.97(±5.73) 5.86(±2.84)
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Figure 2: Uncertainty reduction
in our Gazebo simulations (9
instances). The performance is
aligned with our evaluation re-
sults.

Our ablation results (see Table 3) confirm that the presence of
the encoder is critical: without it, performance is drastically de-
graded, as the agent mostly sequences locally greedy decisions
into suboptimal search paths. Nevertheless, we note that by re-
lying on receding-horizon optimization, our trajectory sampling
variant drastically improves the solution quality of the model
without encoder.

D Numerical Simulations

Due to size limitations of the arena used for our experimental
results, and to the limited number of ground truth instances,
we performed additional simulations in Gazebo to further test
the use of CAtNIPP on robot. Keeping the robot (TurtleBot3-
Burger) and sensor (Rasberry Pi Camera V2) identical to our
experimental results, we implemented our algorithm in a larger
planning domain of 8 × 8m2. The test results are shown in
Figure 2 and Table 4.

Table 4: Uncertainty reduction in our Gazebo simulations (9 instances for each budget). Num-
bers are the average covariance matrix trace after running out of budget (standard deviation in paren-
theses).

Method Budget 6 Budget 8 Budget 10 Budget 12

g.(400) 17.13(±5.99) 7.39(±4.54) 3.49(±1.69) 2.06(±1.13)
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