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I Pseudocode for DUKF in BEVO1

In this Section, We elaborate upon the description of DUFK utilized in BEVO with the pseudocode2

shown in Algorithm 1, as well as the training process of BEVO in 2. Note: x· stands for state x in3

time ·.4

II Pseudocode for BEVO+5

We further elaborate upon the extension of BEVO as the differentiable front-end of differentiable6

localization. The localization and the odometry are trained together end to end with the robot’s7

location as the supervision, and is available for localization in heterogeneous maps. Similar to how8

we retrieve pitch and roll in BEVO, we also utilize the DUKF for localization, and name the whole9

process as BEVO+. The pseudocode for the localization is shown in Algorithm 3 and Algorithm 4.10

Note: In these algorithms, {x·, y·, yaw·} stands for the 2D location and the heading angle of the11

robot in time ·.12

III Experimental Setups for Heterogeneous Localization13

We take the GPS data as the ground truth to evaluate the performance of the localization. For each14

scene, we train the odometry and the localization with the first two quarters of the data, evaluate it15

with the third quarter, and test it with the last quarter.16

• In CARLA, we localize a vehicle on the satellite map in different weathers. We train and utilize17

BEVO as the odometry and localize the projected BEV (from different weathers) on the heteroge-18

neous satellite map.19

• The AeroGround (AG) Dataset is collected for multi-robot collaboration. In this dataset, we train20

and utilize BEVO as the odometry and localize the ground robot with its front camera BEV on the21

heterogeneous map built by a drone.22

IV Visual Results on Odometery23

In this Section, we elaborate upon the visual demonstration of the odometry for sequence 00∼0824

of the KITTI dataset. These sequences are the training and validation sets. The demonstrations are25

shown in Fig. 1. Together with the demonstration of sequence 09∼10, the results show that BEVO26

stays robust not only in training, validation, but also in the testing. We argue that this is achieved27

knowing the testing sequences share the same sensor as the training. This proves that the training of28

BEVO for each sensor can be applied once for all.29

V Visual Results on Localization30

In this Section, we show more visual results of the differentiable localization, BEVO+. Since the31

performance of BEVO+ in the real world is demonstrated in the original paper, we gave a set of32

demonstration in different settings of Carla, to study the robustness of the method, as shown in33

Fig. 2. We first train the localization in sunny days of Town 1, with randomly generated obstacles,34
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Algorithm 1 Unscented Kalman Filter (UKF)

Input: xt−1,∆xt−1, x measuret
Output: xt

1: Load µt−1, σt−1 into this recursion.
2: Xt−1 ← Sampling([xt−1], σt−1)
3: X̄∗

t ←MotionModel(Xt−1, [∆xt−1] )
4: µ̄t ←WeightedAverage(X̄∗

t )
5: σ̄t ←WeightedAverage[(X̄∗

t − µ̄t)(X̄
∗
t − µ̄t)

T ] + Motion Noise Ot

6: X̄t ← Sampling(µ̄t, σ̄t)
7: Z̄t ←MeasurementModel(X̄t)
8: M̄t ←WeightedAverage(Z̄t)
9:

∑̄
t ←WeightedAverage[(Z̄t − M̄t)(Z̄t − M̄t)

T ] + Measurement Noise Qt

10:
∑̄X,Z

t ←WeightedAverage[(X̄i
t − µ̄t)(Z̄

i
t − M̄t)

T ]

11: Kt ←
∑̄X,Z

t

∑̄−1

t
12: Zt ← [x measuret]
13: µt ← µ̄t +Kt(Zt − M̄t)
14: σt ← σ̄t +Kt

∑̄
tK

−1
t

15: xt ← µt

16: return xt

Algorithm 2 BEVO
Input: imaget−1, imaget, imu data, Ground Truth:t∗t , θ∗t
Output: 2D translation: tt, pitch: αt, roll: βt, yaw: θt

1: Load αt−1, βt−1 from last recursion of BEVO into this recursion.
2: Load ωαt−1 , ωβt−1 from imu data
3: Load accxt , acc

y
t , acc

z
t from imu data

4: Load ∆t from imu data
5: [∆αt−1,∆βt−1]← [ωαt−1 , ωβt−1]×∆t

6: α measuret ← −arctan(accxt /
√

accyt
2 + acczt

2)

7: β measuret ← arctan(accyt /acc
z
t )

8: [αt, βt]← UKF([αt−1, βt−1], [∆αt−1,∆βt−1], [α measuret, β measuret])
9: imagebevt−1 ← BEVProjection(imaget−1, αt−1, βt−1)

10: imagebevt ← BEVProjection(imaget, αt, βt)
11: [tt, θt]← DPC(imagebt−1, imagebt )
12: Loss L([t∗t , θ∗t ], [tt, θt])
13: Backward
14: return tt, θt, αt, βt

and test it in Town 2, denoted as “Dynamic Obstacles”. Then we remove the dynamic obstacles, also35

train in Town 1 and test in Town 2, named as “Sunny”. Finally, we change the lighting condition to36

nighttime, and train the localization in Town 1 and test in Town 2, denoted as “Night”. The results37

shows that BEVO+ is robust if the modality of sensors and the global map in the testing stage stay38

unchanged with that of training stage. Note: The green points which stand for BEVO+ in the figure39

is almost invisible because they are mostly overlapped with the ground truth.40

VI Related Works41

In this section, we will introduce the related works of VIO, mainly divided into two parts, traditional42

methods and learning-based methods.43

VI.1 Traditional Methods44

Visual-inertial odometry aims to fuse data from the camera and inertial measurement unit to estimate45

the ego-motion. Traditional VIO methods are mainly based on filtering and optimization. Mourikis46
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Algorithm 3 BEVO For Localization (BEVO+)

Input: imaget−1, imaget, imu data, drone map, xt−1, yt−1, yawt−1

Output: xt, yt, yawt

1: [∆xt−1,∆yt−1,∆yawt−1]← BEVO(imaget−1, imaget, imu data )
2: [x∗

t , y
∗
t , yaw

∗
t ]← [xt−1 +∆xt−1, yt−1 +∆yt−1, yawt−1 +∆yawt−1]

3: Load bev image of imaget from BEVO as imagebt .
4: image∗t ← CropInDroneMap( x∗

t , y
∗
t , yaw

∗
t )

5: [∆x
′

t,∆y
′

t,∆yaw
′

t]← DPC( imagebt , image∗t )
6: [xt measure, yt measure, yawt measure]← [x∗

t +∆x
′

t, y
∗
t +∆y

′

t, yaw
∗
t +∆yaw

′

t]
7: [xt, yt, yawt]← UKF ForLocalization([xt−1, yt−1, yawt−1],

[∆xt−1,∆yt−1,∆yawt−1],
[xt measure, yt measure, yawt measure])

8: return xt, yt, yawt

Algorithm 4 UKF ForLocalization

Input: [xt−1, yt−1, yawt−1], [∆xt−1 odom,∆yt−1 odom,∆yawt−1 odom],
[xt measure, yt measure, yawt measure]

Output: [xt, yt, yawt]
1: Load µt−1, σt−1 into this recursion.
2: Xt−1 ← Sampling([xt−1, yt−1, yawt−1], σt−1)
3: X̄∗

t ←MotionModel(Xt−1, [∆xt−1 odom,∆yt−1 odom,∆yawt−1 odom] )
4: µ̄t ←WeightedAverage(X̄∗

t )
5: σ̄t ←WeightedAverage[(X̄∗

t − µ̄t)(X̄
∗
t − µ̄t)

T ] + Motion Noise Ot

6: X̄t ← Sampling(µ̄t, σ̄t)
7: Z̄t ←MeasurementModel(X̄t)
8: M̄t ←WeightedAverage(Z̄t)
9:

∑̄
t ←WeightedAverage[(Z̄t − M̄t)(Z̄t − M̄t)

T ] + Measurement Noise Qt

10:
∑̄X,Z

t ←WeightedAverage[(X̄i
t − µ̄t)(Z̄

i
t − M̄t)

T ]

11: Kt ←
∑̄X,Z

t

∑̄−1

t
12: Zt ← [xt measure, yt measure, yawt measure]
13: µt ← µ̄t +Kt(Zt − M̄t)
14: σt ← σ̄t +Kt

∑̄
tK

−1
t

15: [xt, yt, yawt]← µt

16: return xt, yt, yawt

et al. [1] propose a Multi-State Constraint Kalman Filter (MSCKF) method that utilizes the EKF47

to estimate poses. Moreover, Li et al. [2] improve the MSCKF approach by ensuring the correct48

observability properties and performing online estimation of calibration parameters. Sun et al. [3]49

present a stereo version MSCKF which is robust and efficient. OKVIS [4] optimizes through key-50

frame while VINS-Mono [5] is a state estimator based on nonlinear optimization, which contains a51

tightly coupled visual-inertial odometry and performs global pose graph optimization. These robust52

methods can generalize well but require empirical parameter tuning which is labor intensive.53

VI.2 Learning-based Methods54

VINet [6] is the first end-to-end learning-based method for visual-inertial odometry which elimi-55

nates the need for manual synchronization and calibration. DeepVO [7] uses Recurrent Convolu-56

tional Neural Networks to learn feature representation in visual odometry problems. Wang et al. [8]57

present TartanVO, which can generalize to multiple datasets and real-world scenarios. DeepVIO58

[9] merges 2D optical flow features and IMU data to provide absolute trajectory estimation, dur-59

ing which the depth and dense point cloud are estimated. More recent works, e.g., SelfVIO [10],60

CodeVIO [11], UnDeepVO [12], Li et al. [13], also take advantage of depth estimation to achieve61

high pose estimation accuracy. However, all methods above train a large network with millions of62

parameters, resulting in heavy models and are merely interpretable with weak generalization abil-63
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ity. Therefore, we set to solve this problem by introducing a fully interpretable model with only 464

trainable parameters.65
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Figure 1: The visual demonstration of BEVO in sequence 00∼08 of KITTI.
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Figure 2: The qualitative demonstration of the localization in different conditions of Carla.
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