Figure 1: Concept learning visualization. From top to bottom: the original image, supervised in-
stance segmentation map, and our concept learning results.
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A ALFRED Dataset

We evaluate our method and its counterparts on ALFRED [1], which is a benchmark for connecting
human language to actions, behaviors, and objects in interactive visual environments. Planner-based
expert demonstrations are accompanied by both high- and low-level human language instructions in
120 indoor scenes in AI2-THOR 2.0 [2]. ALFRED [1] includes 25,743 English language directives
describing 8,055 expert demonstrations averaging S0 steps each, resulting in 428,322 image-action
pairs. The test set contains “Test seen” (1,533 episodes) and “Test unseen” (1,529 episodes); the
scenes of the latter entirely consist of rooms that do not appear in the training set, while those of
the former only consist of scenes seen during training. Similarly, the validation set contains “Valid
seen” (820 episodes) and “Valid Unseen” (821 episodes). The success rate is the ranking metric
used in the official leaderboard.
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Table 1: Comparison of the semantic policies on the ALFRED benchmark. Red denotes the top
success rate (SR) (ranking metric of the leaderboard) on the test_unseen set. We take our ECL
w. depth as the baseline model and make comparison between our model and our model + learned
semantic policy [3].

Supervision Test Seen Test Unseen
Method Semantic Denth  Polic PLWGC GC PLWSR SR PLWGC GC PLWSR SR
emantic Hep Y %) (%) () (%) (%) (%) (%) (%)
ECL x J/ probability map 1234 27.86 8.02 1826 11.11 2730 7.30 17.24

ECL + PoLICcY X v/ learned map 12.74 2798 8.67 1879 11.52 2775 745 17.92

Table 2: Performance by different task types of model ECL w. Depth on the validation set.

Val Seen % Val Unseen %
Task Type
Goal-condition Success Rate Goal-condition Success Rate

Overall 30.83 18.67 21.74 10.50
Examine 46.81 31.18 47.98 29.65
Pick & Place 21.36 23.72 3.67 8.49
Stack & Place 16.38 6.25 7.80 0.99
Clean & Place 41.44 24.77 29.50 8.85
Cool & Place 19.64 5.88 13.15 0.00
Heat & Place 35.75 19.27 31.00 13.67
Pick 2 & Place 34.48 19.67 19.14 11.84

B Evaluation of the Semantic Policy

In this section, we evaluate the semantic policy used in our model (average semantic probability
map from demonstrations), in comparison to the learned semantic policy in FILM [3]. [3] learns a
semantic policy model using additional map supervision. However, the policy in our work is freely
available from the grounded average semantic probability map. From Tab. 1, we can see that: our
average semantic probability map achieves good performance. With the learned semantic policy, the
success rate improves slightly from 17.24% to 17.92%. To keep our framework clean with reduced
supervision, we train our model without learning a semantic policy [3].

C Per-task Performance

We provide per-task performance (success rate and goal-condition success rate) in Tab. 2 to show
ECL’s strengths and weaknesses in different types of tasks. We have the following observations: 1)
“Stack & Place” and “Cool & and Place” are the most challenging tasks, with a low success rate.
2) The “Examine” task is the easiest task, with a success rate over 30% and 46.81% goal-condition
success rate. 3) A similar observation with FILM [3] regarding the number of subtasks and success
rate is found: whereas “Heat & Place” and “Clean & Place” usually involve three more subtasks
than “Pick & Place”, the metrics of the former are higher than the latter. This is because “Heat &
Place” only appears in kitchens, and “Clean & Place” only appears in toilets. And the room area of
these two scenes is relatively small. The results show that the success of a task is highly dependent
on the type and scale of the scene.

D Detailed Analysis of Concept Learning

In addition to the figure shown in our main paper, we also report the per-object concept grounding
evaluation results (small) in Tab. 3. Objects “HandTowel”, “KeyChain”, “Bowl”, and “Television”
have over 80% concept learning accuracy because these objects often appear alone in the scene



Table 3: Concept grounding accuracy (small).

Category Vase  Pillow Plate Laptop FloorLamp Newspaper HandTowel — Box
Accuracy (%)| 61.5 66.7 514 70.0 68.1 57.5 85.4 74.0
Category Towel Television = Mug Book Bowl Tomato Knife KeyChain
Accuracy (%)| 67.4 81.1 46.7 53.1 81.5 60.0 65.9 83.2
Category Cloth TeddyBear CellPhone BasketBall Glassbottle ~ Apple CD Others
Accuracy (%)| 21.4 18.1 13.2 0 1.3 50.2 38.6 57.0

Table 4: Concept grounding accuracy (large).

Category Shelf TVStand Dresser Fridge  Microwave SinkBasin BathtubBasin
Accuracy (%) 77.9 82.6 75.2 13.6 64.8 99.6 0
Category CoffeeMachine Cart Cabinet Desk CoffeeTable Safe Drawer
Accuracy (%) 81.0 59.5 2.6 0 74.3 73.4 38.8
Category Bed Sofa DiningTable GarbageCan  Toilet = CounterTop  Others
Accuracy (%) 64.4 72.7 52.9 53.3 81.5 87.2 59.4

(easy to learn and less likely to be confused). Objects like “HandTowel”, “KeyChain”, “Bowl”, and
“Television” rarely appear in the environment, so their concepts are difficult to learn.

Likewise, we perform detailed evaluations and report the per-object concept grounding evaluation
results (large) in Tab. 4. We notice two classes with ground accuracy of 0: “BathtubBasin” and
“Desk”. This is because all BathtubBasins are identified as SinkBasins by our grounding model
(SinkBasins are shown more frequently than BathtubBasins). As for “Desk”, the object proposals
are identified as “CoffeTable”, “DiningTable”, etc. The average grounding accuracy for large objects
is higher than for small objects, because large objects often appear alone in the scene (easy to learn
and less confusing).

E Details of the deterministic policy

The deterministic policy is based on the Fast Marching Method [56]. If the object needed in the
current subtask is observed in the current semantic map, the location of the object is selected as the
goal; otherwise, we sample the location based on the distribution of the corresponding object class in
our averaged semantic map as the goal. In both cases, we did not use any domain knowledge about
ALFRED. We find the goal from the concept learner and plan the shortest path to the goal based on
our semantic map. It’s a very general solution that can be used in many other tasks or environments
rather than a hand-coded policy for ALFRED.

F More Visualization Results

In this section, we show more visualizations of our concept learning results in Figure 1. We also
demonstrate two examples of intermediate estimates by ECL when an agent tries to accomplish an
instruction in Figure 2.

G Key Assumption for Other Simulators or Real Robots

Real robotics applications have been one of the longstanding motivations for this work and have
been carefully considered by the authors in the design of ALFRED. When generalizing our model
to real-world scenarios:

* The instruction parser is supervisedly trained, and can be directly employed in the real
world.
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Figure 2: Two examples of intermediate estimates for ECL when the agent tries to accomplish the
instructions. Based on RGB observations, our system estimates the depths and semantic masks.
The BEV semantic map is gradually established with these estimates as exploration continues. The

goals (sub-goal/final-goal) are represented by large blue dots in the semantic map, while the agent
trajectories are plotted as small red dots.

» The embodied concept learner should work when there are real-world demonstrations. Cur-
rently, we have some assumptions based on the artifact of the AI2THOR environment.
However, the assumptions are not strong and are still applied to real environments.

» Unsupervised depth and mapping are well-studied problems in the real world. We see this
as a reasonable assumption for the time being.



e Still, there are some limitations in ALFRED that the action execution is not feasible, i.e,
picking up an object by only one command without robot manipulation. However, the
low-level control task and the current embodied instruction following task are orthogonal,
which means the two tasks can still be decoupled in real-world scenarios, while our model
focus on instruction following.

However, it’s really challenging for a robot to perform instruction following in an unseen real-world
environment, even in a simulated environment (test unseen success rate of only 23.6% even in our
oracle model). To this end, ALFRED simplifies the hard problem of making meaningful progress
through tight integration between visual perception, language instruction, and robotic navigation
and manipulation. To the best of our knowledge, no other benchmarks contain language instructions
in an interactive 3D environment with visual observation and navigation. As the field progresses,
we are confident more works and benchmarks will be introduced, and we will take it as our future
research direction.

H Related Work about Depth and Mapping

Depth estimation [4, 5, 6, 7, 8, 9, 10] has witnessed a boom since the emergence of deep learning.
Compared with stereo matching [10, 11, 12] and sensor-based methods [13, 14], the monocular
depth estimation only requires a single-view color image for depth inference, which is suitable for
practical deployment given its low-cost nature. Following the supervised methods [15, 16], Zhou
et al. [8] first demonstrated the possibility of depth learning in an unsupervised manner, inspired by
the learning principle of humans. Afterwards, the unsupervised depth estimation are well explored
in both indoor [17, 18, 19] and outdoor scenarios [9, 20, 4] due to its labeling-free advantage. In this
work, we also follow their spirits to investigate the learning process of an agent baby. After depth
estimation, a mapping module [21, 22, 23] is usually included in a robotic system to memorize the
geometry layouts of the visited regions for path planning and navigation. Given different sensor
properties and map representations, the mapping procedure could also differ. For instance, [24, 21]
maintain reliable sparse landmarks, [22] constructs TSDF, and [25, 23] store voxel maps.
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