A Appendix

A.1 Related Work

Recent progress in RL has partly been made possible by combining rich function classes like deep
neural networks with powerful techniques such as Q-learning [24] and actor-critic approaches [16].
In recent years huge strides have been made in training agents for complex tasks, such as for playing
Atari games with discrete and continuous action spaces [12, 25]. Additionally, RL has achieved
human-level performance in games like chess [26] and Go [27].

However, it is becoming increasingly clear that simple exploration is not enough to circumvent the
curse of dimensionality in environments with long horizons and sparse rewards. As a remedy the
broad area of Hierarchical Reinforcement Learning (HRL) attempts to decompose RL problems
into multiple levels of abstraction— temporal, spatial, or otherwise. Many works deploy separate
policies over different time horizons and action spaces [11, 28, 29, 30]. Temporal abstraction in
planning can be traced back at least to Sutton et al. [2], where the options were introduced to refer
to lower level policies. In most existing research in hierarchical RL, learning a sub-task precedes
the learning of a policy which uses it. This includes [31, 32, 33, 34, 35]. This paper is set apart
by the fact it does not rely on an apriori knowledge of the starting distributions of the sub-tasks
as required by some related literature on hierarchical RL, such as [36]. We further elaborate on
literature relevant to the two important facets of our approach below.

On expert help via primitives or skills: Various recent works utilize expert help in the form of
primitives or skills [4, 5, 6, 7, 8, 9, 20]. This takes place via parameterized action spaces [4],
stitching together independent task schemas (or skills) [5, 6, 9, 20] or learning parameters of action
primitves [7, 9, 8]. In all of these cases, learning takes place within the traditional hierarchical
framework, i.e., bottom-up (see Figure 2), where a sub-task is learnt before the policy that uses it.
Our method proposes a framework to learn top-down instead with large-improvements in sample-
efficiency over traditional bottom-up learning. With minimal changes in the implementation of their
primitives and skills, the above diverse strategies can also benefit with shorter learning times by
utilizing our framework to learn top-down.

On expert help with humans-in-the-loop: Other approaches to expert intervention include explicit
help with humans-in-the-loop required throughout training [21, 22]. In contrast, in our method,
human effort is only required at the beginning to create the option template hierarchies.

On hierarchical learning in robotics: Task and motion planning (TAMP) methods [37] are alter-
nate hierarchical approaches for tackling long-horizon problems in robotics. They generally high-
light the interplay of motion-level and task-level planning, with the task-level planner constraining
the motion-level planner. In contrast, our approach allows the task-level planner to learn using fea-
sible paths which can be satisfied by the motion-level planner. This allows us to achieve high reward
with few samples.

On exploration in high-dimensional tasks: An alternative approach to counter the need for ex-
ploration in high dimensional tasks is through the use of demonstrations [1] for long horizon plan-
ning. The intuition is that introducing a degree of behavioral cloning of expert demonstrations helps
reduce the amount of exploration the agent has to perform. A different approach known as Hind-
sight Experience Replay (HER) [23] incorporates the goal information into the state, using a failed
terminal state as an alternative goal to reward the transitions leading to it. These methods are or-
thogonal to our approach. By themselves, they are unable to achieve the large degree of reduction
in sample-complexity seen with our framework. Yet, alongside expert help, they further improve
sample-efficiency as seen in our experiments.

12

Task [Policy Sketch Task Learning | Option templates
get wood - level
get iron - get gold 1 {give bridge, primitive actions }
make bridge | get wood — getiron make bridge 2 {give wood, give iron, primitive
— use factory actions }
get gold make bridge — get wood 3 {primitive actions}
use bridge on water get iron 3 {primitive actions}

Table 5: Get gem hierarchical task: [LEFT] policy sketches [14] & [RIGHT] option templates for
each task in the hierarchy. The order of the rows represent the learning order in the two alternatives.

Task Episodes
Curriculum learning | Option templates
[14] (Ours)
get gold > 2.65 x 10° 10516.0 + 2833.0
make bridge > 1.8 x 10° 7974.0 £ 1853.0

Table 6: Comparison of total episodes (and standard deviations over ten random seeds) to train an
agent to solve the get gem task via option templates and curriculum learning [14].

A.2 Additional Details of Experiments on the Craft Environment

A.2.1 Results on the get gold Task.

get gold make bridge
M\WW‘“WWW\MMW b
0.8 / WMW
0.8 wwml"
o kel {
A se I
I / v 06 f
0.4 | o f
> / > N
© | @ !
0.2 J 0.4
I —— option-templates —— option-templates
*I" option value iteration option value iteration
0.0 0.2
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
episodes episodes

Figure 6: Average reward vs episodes for solving each hierarchical sub-task. We compare option
templates (our method) and option-value iteration (baseline) for the task get gold in craft environ-
ment.

A.2.2 Additional Environment Details

For a fair comparison with [14], we set the maximum steps in the environment for get wood and get
iron to 100; for make stick to 200; for make bridge to 300; for make axe and get gold to 400; and for
get gem to 500.

A.2.3 Hyperparameters

The Adam optimizer was used to train all networks. The batch size was always set to the size of the
memory. The exploration (¢) is exponentially reduced. For all tasks, we use a discount factor ()
of 0.99 for primitive actions and 0.99¢ for option templates. The exponent (d) is the expected task
horizon and is reported in Table 7. Other hyperparameters are also given in Table 7.

In option value iteration, we use the exact task horizon which is available to the agent since options
are learnt bottom-up. The other hyperparameters in option value iteration are the same as those
reported for option templates.

A.2.4 Discussion

Figures 4 and 6 show that option templates obtain a higher average reward than option-value iter-
ation at all levels. In particular, at level 2, the two curves appear closer since the option templates

13

Parameters | get gem | make axe | make stick | get gold | make bridge

expected task horizon (d) 100 | 50 [40 | 100] 50
memory size (transitions) 20xd
learning frequency (steps) 20xd

learning rate 0.001

Table 7: Hyperparameters for option templates in craft environment.

curve converges to a lower value than in levels 1 and 3, likely due to the tasks on level 2 being
more difficult. We believe the gap occurs because policies at the levels below the one currently
being learned typically do not perform perfectly in option-value iteration. Further, these errors may
“confuse” training the option in option-value iteration. Whereas in our approach which uses option
templates which do not make these errors, we avoid the aforementioned issue.

A.3 Additional Details of Experiments on the Fetch and Stack Environment

The Fetch and Stack environment is implemented inside the MuJoCo physics engine designed to
simulate multi-body interactions including contacts, joints and collision. Unlike craft, this envi-
ronment does not permit the implementation of option-templates as part of its action space. We
circumvent this problem by adding action primitives using simple state-feedback controllers. Each
option-template is implemented in this fashion, for different learning levels (see Table 3), until the
lowest level is reached. The agent treats the state feedback controllers as option-templates during
training phase. As intended, the agent only gets access to read the states after the option-templates
reach the termination condition. The option templates can also terminate after a timeout (80 steps
for level 1 and 30 steps for level 2).

A.3.1 Hyperparameters

The Adam optimizer was used to train all networks. The batch size was always set to 20% of the
memory size. The exploration (e) is exponentially reduced. All other hyperparameters are given in
Table 8. The baseline used the same hyperparameters as option templates.

Parameters | level 1 | level 2
discount factor (v) 02] 0.8
memory size (transitions) 100
learning frequency every 1500 steps for 3 blocks
every 2000 steps for 4 blocks
learning rate 0.001

Table 8: Hyperparameters for option templates in fetch and stack environment.

A.3.2 Comparison to Learning multi-level hierarchies with hindsight [38]

We also compared our method with Levy et al. [38]’s Hindsight Actor Critic (HAC) algorithm in the
Fetch and Stack environment on the three block stacking task and clearly notice that it cannot learn
to stack even two blocks in more than 10 times our learning time.

HAC [38] obtain an average reward of only 0.138 after (67.2 + 0.1) x 10° steps (obtained over 5
random seeds). In comparison, we obtain an average reward of 1 after a learning duration of only
(4.5 +£0.1) x 10° timesteps.

We note that, we use the high-level / low-level learning strategy described in Yang et al. [39] and
only mention the high-level learning time (which is much lower than the low-level learning time)
for Levy et al. [38] here for a fair comparison. We plot the variation of rewards at all levels with our
method, baseline and HAC [38] in Figure 7.

Further, the method proposed in Yang et al. [39] called Universal Option Framework is shown to
outperform Levy et al. [38]’s Hindsight Actor Critic. Even with this boost, according to Yang et al.
[39], their method attains a 0.7 average reward at the high-level only after (48043.2) x 10° timesteps.

14

Method Easy Medium Hard
avg. goal steps avg. goal steps avg. goal steps
difference difference difference
Option 5.79£0.92 0.3M 3.0+£0.71 0.3M 2.0+0.18 0.3 M
Templates (win game) (win game) (win game)
+1.8M +1.8M +1.8M
(attack) (attack) (attack)
=21M =21M =21M
Baseline 1.2+£0.22 4.2M 0.8 £0.33 4.2M 0.26 £0.1 4.2M
1-Player 5.14 + 2.88 500 M —0.36 £0.11 500 M —0.47 £ 0.48 500 M
Impala [19]
1-Player DQN | 8.16 +1.05 500 M 2.01 £0.27 500 M 0.27 £ 0.56 500 M
DQN [19]

Table 9: Numerical values of Figure Sc: comparison of time steps and corresponding average goal
difference (including standard deviation across 5 random seeds) for option templates (controlling
11-players), baseline (controlling 11-players), and single-player agents [19].

Three blocks

=
o

ety —— option-templates, level 0
o at A option-templates, level 1
0.8 baseline
° —— HAC, Low-level
g 0.6 HAC, High-level
(O]
—
0.4
>
©
0.2
mewwmwmﬂwwwﬁ
0.0 =
0 2 4 6
time steps le6

Figure 7: Average reward vs episodes for all levels with option templates (our method), the baseline
and HAC [38] in the Fetch and Stack environment.

A.4 Additional Details of Experiments on the GFootball Environment

The GFootball environment returns a unit reward for each goal scored. For our approach, we con-
sider an agent controlling all 11 players; in contrast, the implementations of some baselines we
compare to only control one player. The task where the agent must control all 11 players is signifi-
cantly more challenging, and we are unaware of any 11-player baseline. This is because, our action
space is much larger, and difficult for exploration.

Similar to fetch and stack, since the environment does not have any teleportation support, we imple-
ment option templates using simple planners and open-loop controllers (described below). We also
provide the numerical values plotted in Figure 6 in Table 9.

A.4.1 Additional Environment and Option Template Details

The dimensions of the football field is bounded by the following limits : [—1,1] along the x-
coordinate, and [—0.42, 0.42] along the y-coordinate. Of the 19 available actions, there are 8 move-
ment actions, one for each of the following directions - {top, top-right, right, bottom-right, bottom,
bottom-left, left, and top-left }. There are three actions for passing - { long pass, short pass and high
pass}, and one for shooting. There are actions to toggle the following modes - { sprinting, dribbling
and movement}. The environment permits an action to let the game engine pick a default move.

The implementations of the option templates in Table 4 are described below :

15

Charge to the opponent’s goal: This option template makes the ball controlling player on the
agent’s team run in a straight line to the center of the opponent’s goal. The precondition for this
option template being that the agent’s team has the ball. The option template terminates when a
player with the ball is within a distance of 0.3 units from the goal (1,0). If the precondition is
satisfied, the player sprints in one of the above 8 directions, depending on the angle between the ball
controlling player and the opponent’s goal.

Maintain ball possession: This option template enables the agent’s team to maintain ball possession
by either passing the ball to a teammate or move slowly towards the goal while avoiding opponent
players who can intercept the ball. When no opponent interceptors are identified ahead of the ball
controlling player, in one of 5 relevant directions (top, top-right, right, bottom-right or bottom), the
player moves in the identified free direction. Which by default, is towards the opponent’s side of the
field. This attacker is supported by two players (wings). Otherwise, if no free space is identified,
the ball controlling player passes the ball to a teammate with the least number of opponents around
him who can intercept the pass. The choice of action (short, long, and high - pass) is based on the
distance between the two players.

Shoot: This option template is the same as the environment action to shoot a goal.

Attack and score goals: This option template is a composition of charge to the opponent’s goal,
maintain ball possession and shoot. When the x coordinate of the ball controlling player is greater
than or equal to 0.5, the ball controlling player charges to the goal. When this attacking player is
within 0.25 units from the goal, the player takes a shot. Otherwise, the agent’s team simply maintains
ball possession.

Defend: This option template replicates the inbuilt game engine to block goal attempts by the other
team and get ball possession.

All of the above option templates will also terminate after 200 steps. Additionally, for level 1, we
mask all but the one hot encoding of ball ownership in the input. Further, while it is possible to
combine defend with attack and score goals to play the game, they are unable to achieve similar
performance levels as compared to the baseline or option templates.

A.4.2 Hyperparameters

The Adam optimizer was used to train all networks. The batch size was always set to 40% of the
memory size. The exploration (e€) is exponentially reduced. All other hyperparameters are given in
Table 10. The hyperparameters for level 2 in Table 10 were also utilized in the baseline.

Parameters level 1 level 2
easy | medium | hard easy | medium | hard
discount factor () 0.9 0.93 0.93 0.96
memory size (transitions) 6000 6000 3000 3000
learning frequency every 3000 steps every 3000 steps | every 30,000 steps
learning rate 0.001 0.001 0.0 [0.005

Table 10: Hyperparameters for option templates in gfootball environment.

16

	Introduction
	Background
	Learning with Option Templates
	Option Templates
	Learning with Option Templates

	Experiments
	Experiments on Planning tasks in the Craft Environment
	Experiments on Manipulation Tasks in the Fetch and Stack Environment
	Experiments on Multi-Robot Tasks in the GFootball Environment

	Related Work
	Limitations and Conclusion
	Appendix
	Related Work
	Additional Details of Experiments on the Craft Environment
	Results on the get gold Task.
	Additional Environment Details
	Hyperparameters
	Discussion

	Additional Details of Experiments on the Fetch and Stack Environment
	Hyperparameters
	Comparison to Learning multi-level hierarchies with hindsight newcomparison

	Additional Details of Experiments on the GFootball Environment
	Additional Environment and Option Template Details
	Hyperparameters

