A Environment Details

In this section, we provide further details of the environment, offline data, and target tasks for our
real-world and simulated experiments.

A.1 Real-World Environment

Environment. We use a similar robotic platform as in Ebert et al. [8]. The platform includes a 6-
DoF WidowX robot with a 1-DoF parallel-jaw gripper installed in front of a kitchen-themed tabletop
manipulation environment. A LogiTech webcam is mounted over-the-shoulder to capture 128 x 128
RGB images as observations. The action is 7-dimensional which includes the 6 DoF gripper pose
and 1 continuous value which controls the finger status. We use the toy kitchen 2 from Ebert et al.
[8] as the target scene, where all of the target tasks take place in.

Offline data. As shown in Fig. 6, we use the bridge dataset from [8] for the real-world experiments,
which is a large and diverse dataset of robotic behaviors collected in various scenes with different
objects and illuminations. The trajectories are collected through tele-operation using virtual reality
equipment. The training is conducted on 11,980 trajectories, which is comprised of 2,061 trajectories
from toy kitchen 2 and 9,919 trajectories from the other scenes of the bridge data. These training
data include picking and placing objects into different destinations, turning a faucet, tilting a pot
upright, etc. The objects used in the target tasks are held out from the offline data.

N N
WG
b € NN

Figure 6: Example trajectories of the offline data for real-world experiments. We use the Bridge
Dataset [8] for our real-world experiments, which is composed of demonstration trajectories collected through
tele-operation from 10 different scenes with a variety of objects.

Target tasks. In each target task, a desired goal state is specified by a 128 x 128 RGB image (same
dimension as the observation). The robot is tasked to reach the goal state by interacting with the
objects on the table. Task success for our evaluation is determined based on the object positions
at the end of each episode (this metric is not used for learning). We design three target tasks that
require multi-stage interactions with the environment to complete. The objects in these target tasks
are unseen in the target domain in the offline data. The episode length is 75 steps in the real world.

A.2 Simulated Environment

Environment. Our simulated experiments are conducted in a table-top manipulation environment
with a Sawyer robot. At the beginning of each episode, a fixed drawer and two movable objects are
randomly placed on the table. The robot can change the state of the environment by opening/closing
the drawer, sliding the objects, and picking and placing objects into different destinations, etc. At
each time step, the robot receives a 48 x 48 RGB image as the observation and takes a 5-dimensional
continuous action to change the gripper status through position control. The action dictates the

13

Figure 7: Example trajectories of the offline data for simulated experiments. Our offline dataset for
simulated experiments are collected by a scripted policy using privileged information from a variety of scenes

and camera viewpoints. The collected trajectories involve diverse interactions with the environment such as
picking, placing, pushing, opening drawer, and closing drawer.

4L "

M z O-Z ' E H u au ~
bt K9 Wz, z) Azy,zpa) |y Z
5 t t f 5 f
FC : FC FC FC : FC FC
t i t t t = t t
FC i FC FC FC | FC FC
N = :
i o I
. Z . Zg VA . Zg Z ¢ Zg a ¢ : Zt s zt u
S : Policy Value Function Q-Function : CVAE Encoder CVAE Decoder

(Affordance Model)
State Encoder

Figure 8: Network architectures. We show the architectures of the state encoder, the policy network, the
value function, the Q-function, the CVAE encoder, and the CVAE decoder (affordance model).

change of the coordinates along the three axes, the change of the rotation, and the status of the
fingers. The simulated environments are implemented with a real-time physical simulator [62].

Offline data. Example trajectories of our offline data in the simulation is illustrated in Fig. 7. We
collect 12,000 trajectories using a scripted policy to perform primitive behaviors such as picking,
placing, pushing, opening, and closing. The scripted policy utilizes privileged information such
as the ground truth object poses and the gripper pose. These trajectories are collected from envi-
ronments of diverse camera viewpoints and object appearances. In the offline dataset, we hold out
interactions with the drawer (opening and closing) in the target scene, which is an essential type of
behaviors involved in all the target tasks.

Target tasks. We design three target tasks that require strategically stitching together multiple
behaviors, including opening/closing the drawer and other types of interactions with objects in the
scene. In each target task, a desired goal state is specified by a 48 x 48 RGB image (same dimension
as the observation). The robot is tasked to reach the goal state by interacting with the objects on the
table. The task success is determined based on the object positions at the end of each episode. The
episode length is 400 steps in simulation.

14

B Implementation Details

Network Architectures. We illustrate the network architectures of the state encoder, the policy,
the value network, the Q-network, and the affordance model in Fig. 8. The state encoder projects
the images into 128-dimensional representations. The state encoder is implemented with two 128-
dimensional fully-connected (FC) layers on top of a VQ-VAE [18] backbone. The VQ-VAE back-
bone is trained on the offline dataset using the reconstruction loss as in [18] and its weights are
fixed during the offline pre-training and online fine-tuning in FLAP. The state encoder outputs the
mean p, and standard deviation o, for sampling the lossy representation z. The policy network, the
value network, and the Q-network are implemented with 128-dimensional FC layers. Inputs to these
networks are concatenated and then fed to the FC layers. The policy network produces the mean i,
and a state-independent standard deviation o, is jointly learned to form the action distribution. The
affordance model operates in an 8-dimensional latent space, and both its encoder and decoder are
implemented by 128-dimensional FC layers. The affordance model is trained to predict subgoals of
At = 30 in simulation and At = 20 in the real world using the training protocol from [7].

Learning. We use Implicit Q-Learning(IQL) [11] as the
underlying RL algorithm. To avoid evaluating actions Ablation Study
outside of the offline dataset, IQL performs a modified 10 5

TD update by approximating an upper expectile of the W S
distribution over values. We use Adam optimizer witha Vil Z":‘Qfm \
learning rate of 3 x 10~4 and a batch size of 128. The La- 5 a=001
grange multipliers in Eq. 2 and Eq. 4 are chosen through § o
grid search and are set to be « = 0.01 and 8 = 0.1. Dur- ° a=10

ing offline pre-training, we train the model on the pre-
viously collected datasets with only relabeled goals [38].

While during online fine-tuning, we use 30% ground truth S .
goals and 70% relabeled goals. In each batch, we sample .

60% of the samples from the offline dataset and the rest Figure 9: Ablation Study. We analyze
40% from the online replay buffer following the practice the trade-off between the variational infor-
of Fang et al. [7]. We use | TITAN RTX GPU with 24GB ™aion botleneck and the RL objective by
of memory and 1 Intel Xeon Skylake 6130 CPUS with ° o Piné Hie iyperparameter a i £4. =
48GB of memory during training. The pre-training takes around 10 hours in total and the fine-tuning
takes around 2 hours for each target task.

Planning. Model predictive path integral (MPPI) [12] is used for planning the subgoals as in Fang
et al. [7]. We first sample 1,024 sequences of latent codes from the prior distribution p(u) and
chooses the optimal plan through the planning procedure described in Sec. 3.2. Then we refine the
plan through 5 MPPI iterations. In each iteration, we add Gaussian noises scaled by 1.0, 0.5, 0.2,
0.1, 0.1 to the selected sequence of latent codes from the previous iteration. In Eq. 6, we set the
weight n; = 1, 7o = 1 and 3 = 0.1. The planner produces 4 subgoals and the last subgoal is
replaced with the final goal. The planner switches to the next subgoal in two conditions: (1) when
the current subgoal is reached (2) if the current subgoal is not reached within a time budget of i
steps. We set h = At to spare a more generous time budget for the trained policy to reach each
subgoal, where At is the time interval for training the affordance model described in Sec. 3.2.

C Ablation Study

We conduct ablation studies on the simulated target task C to analyze how the trade-off between the
variational information bottleneck and the RL objective affects generalization. We sweep the weight
a from 0.0 to 10.0 in Eq. 2 and analyze the performance of the fine-tuned policy in the target task.
As shown in Fig. 9, the optimal fine-tuning performance is achieved with o = 0.01. When « is too
small, although the RL loss is lower on the offline dataset, the pre-trained policy does not generalize
well in the target task. When « is too large, the pre-trained policy performs poorly, since the lossy
representation loses too much information.

15

D Qualitative Results

Task execution. In Fig. 10, we show example trajectories of using the policy fine-tuned by FLAP
to execute the target tasks. In the real world, our policies successfully control the WidowX robot to
move pot from stove to stove, move colander onto stove and then drop object into colander, and then
place sushi on plate and drop knife in pan. In simulation, the Sawyer robot is controlled to open/close
the drawer and slide the cylinder. Some of these tasks require the robot to strategically interact with
the objects in the scene in a specific sequential order. For example, in Task C in simulation, the
robot needs to clear obstacle in front of the drawer before opening the drawer.

Initial State Task A Final Goal

Task C
Figure 10: Task Execution. The three target multi-stage manipulation tasks in the real world and

in simulation. Each row shows frames from a single episode, in which the initial state and the final
goal are marked in blue and red.

Planned subgoals. While it is hard to directly visualize subgoals planned in the learned lossy rep-
resentation space, we analyze their characteristics in Fig. 11. Same as in Sec. 4.3. we project image
observations in the target scene using t-SNE [17]. A trajectory of executing the real-world Task B
using the fine-tuned policy it visualized on this t-SNE plot. The orange dots mark the computed
lossy representations of the initial state so and the final goal g of the task. The subgoals planned in
the lossy representation space 21, ..., 23 are shown as blue dots on the plot. The observed images
at each step during task execution are plotted as the blue curve. Although the lossy representations
cannot be directly reconstructed to the image space, we compute their distances to the computed
representations of the observed images at each step. The closest observation to each planned sub-
goal is shown on the plot. As we can see, the planned subgoals are close to the executed trajectory.
The first subgoal commands the robot to reach to the colander. The second subgoal commands the
robot to place the colander onto the stove on the left. In the third subgoal, the robot gripper aims to
pick up the toy from the table.

16

Initial State

o

Lossy Representation Space. &,
"o .::53 '$

Figure 11: Visualization of the planned subgoals. The orange dots indicate the initial state and the final
goal. The blue curve indicates the executed trajectory. The blue dots indicate the planned subgoals in the lossy
representation space. The image observations that are closest to each planned subgoal is shown on the plot.

17

	Introduction
	Preliminaries
	Pre-Training and Fine-Tuning with a Lossy Affordance Planner
	Goal-Conditioned Reinforcement Learning with Lossy Representations
	Composing Subgoals using Lossy Affordances
	Fine-Tuning with Planned Subgoals

	Experiments
	Experimental Setup
	Comparative Results
	Learned Lossy Representations

	Related Work
	Conclusion
	Environment Details
	Real-World Environment
	Simulated Environment

	Implementation Details
	Ablation Study
	Qualitative Results

