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Supplementary Material

In this appendix, we provide additional results on 3D detection performance of CC-3DT on
NuScenes [1], an ablation study on the effect of different 3D detectors, technical details about the
3D estimation model, more qualitative results and a runtime analysis.

A 3D detection results on NuScenes

We evaluate the 3D detection results of CC-3DT with DETR3D [2] as 3D detector on the NuScenes
validation split. As shown in Table 1, our 3D tracking framework with cross-camera motion model
can also improve the overall 3D detection results. Compared to our Kalman Filter baseline (KF3D),
the LSTM motion model refines the 3D estimation better and achieves higher mAP and lower mATE
(mean Average Translation Error). By learning the cross-camera motion, our framework estimates
more accurate object velocity and achieves lower mAVE (mean Average Velocity Error). Overall,
CC-3DT improves not only 3D tracking performance but also benefits the 3D detection results.

B Effect of different 3D detectors

We evaluate the overall performance with different 3D detectors with our CC-3DT on the NuScenes
dataset. In Table 2, among of all methods, our proposed CC-3DT achieves the best NDS and
AMOTA when the most accurate detection results in BEVFormer [3] are used. Thus, we show
that our method is robust to the 3D detector being used and that it can benefit from more accurate
3D detections.

C 3D estimation model

The 3D estimation model in CC-3DT consists of a 3D detector and an appearance feature extractor.
The appearance features are extracted by the similarity head with the generated 2D bounding boxes
as region proposal. We use 4 convolutional layers followed by one fully-connected layer as the
similarity head following QDTrack [4, 5], and train the 3D estimation network using the same 3D
detector as in QD-3DT [6].

C.1 Similarity head training

We use quasi-dense similarity learning [4, 6, 5] to train our similarity head. Given a key frame at time
t, we sample a reference frame within a temporal interval n, where n ∈ [−2, 2] for NuScenes [1]
due to its low sampling frequency and n ∈ [−3, 3] for Waymo Open [7]. For the estimated 3D
bounding boxes bt, each has its corresponding 2D bounding box edt on the image Imt . We optimize
the appearance embedding fdt for each 2D proposal edt using a multi-positive cross-entropy loss as

Lembed = log[1 +
∑
pd

t+n

∑
nd

t+n

exp(fdt · nd
t+n − fdt · pd

t+n)], (1)

where the appearance embedding fdt should be similar to its positive reference embeddings pd
t+n,

and dissimilar to all its negative reference embeddings nd
t+n. We apply an auxiliary loss based on the
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Table 1: Motion model ablation study. 3D detection results of CC-3DT with different motion
models on the NuScenes validation split.

3D Detector Motion Model NDS ↑ mAP ↑ mATE ↓ mAVE ↓

DETR3D [2]
- 0.4138 0.3228 0.6803 0.8545

KF3D 0.4189 0.3244 0.6846 0.8506
VeloLSTM 0.4326 0.3304 0.6594 0.7716

Table 2: Detector ablation study. Comparison of 3D tracking performance of CC-3DT using
different 3D detectors on the NuScenes validation split.

3D Detector NDS↑ AMOTA ↑ AMOTP ↓ RECALL ↑ MOTA ↑ IDS ↓
Baseline 0.3868 0.311 1.433 0.472 0.278 2536
DETR3D [2] 0.4326 0.359 1.361 0.498 0.326 2152
BEVFormer [3] 0.4781 0.429 1.257 0.534 0.385 2219

cosine similarity of the appearance embedding fdt in the key frame and its corresponding embedding
in the reference frame fdt+n as

Laux = (
fdt · fdt+n

||fdt || · ||fdt+n||
− 1(edt , e

d
t+n))

2, (2)

where 1(edt , e
d
t+n) is 1 if edt and edt+n are matched to the same ground truth object and 0 otherwise.

The overall loss for similarity head training is

Lsimilarity = λembed Lembed + Laux, (3)

and we use λembed as 0.25 for training on both datasets.

C.2 Baseline 3D detector

We develop the baseline 3D detector based on Faster R-CNN [8] as in [6]. We estimate the 3D center
(x, y, z) by regressing a logarithmic depth value, and an offset from the Faster R-CNN generated
2D bounding box center to the projected 3D bounding box center. For the object confidence c,
we regress the score by generating the target confidence score as an exponential of negative L1
distance between depth estimation and ground truth. We estimate the object dimensions (l, w, h) by
regressing a logarithmic value, and estimate the object orientation θ following Mousavian et al. [9],
i.e. we learn to classify the angle into 2 bins with binary cross-entropy loss and regress the residual
relative to the belonging bin center. We us Huber loss [10] for the 3D box regression losses.

C.3 Different 3D detectors

As shown in Table 2, our proposed CC-3DT works with different existing 3D detectors. To extract
appearance embeddings given only 3D bounding boxes, we generate the corresponding 2D bounding
boxes by projecting the 3D bounding boxes to the images. We use these 2D bounding boxes to
extract the appearance embedding from the image where the 3D bounding box is visible in. In
addition, we use the 3D score estimated by the 3D detector as our object confidence for the motion
model and only keep the boxes if the score is greater than 0.05.

C.4 3D tracker settings

We use wdeep = 0.5 for the affinity matrix A and 0.5 as the matching score threshold. 0.8 is set as
the score threshold to start a new track for the baseline 3D detector, while 0.1 and 0.2 are used for
DETR3D [2] and BEVFormer [3] considering the higher quality of the 3D detections. We use 0.5
as the score threshold to continue a track for the baseline 3D detector and 0.05 and 0.1 for DETR3D
and BEVFormer. We keep 10 frames for the tracks and 1 frame for the backdrops. Because we use
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Table 3: Runtime analysis. We analyse the contribution of the different components in our pipeline
to the total runtime in seconds on the NuScenes dataset. We measure the runtime of processing a
complete sample consisting of 6 images at full resolution (900× 1600 pixels).

Motion model 3D Detection Appearance feature Data association Motion model Total

KF3D 0.381 0.002 0.037 0.016 0.436
LSTM 0.381 0.002 0.029 0.072 0.484

lower score threshold for DETR3D and BEVFormer 3D detectors, we do not keep the backdrops for
them. Following [4, 6, 5], we apply 0.8 as the momentum to update the appearance features inside
the tracks We use 0.7 and 0.3 2D IoU threshold for duplicate removal on each camera for the new
detections and the backdrops.

D Runtime analysis

We provide a breakdown of the runtime of our pipeline in Table 3. We measure the runtime using a
single RTX 3090 graphics card at batch size 1 on the NuScenes dataset. One batch element consists
of 6 images at 900× 1600 pixel resolution. Note that the setup can differ between datasets and that
this may affect the runtime, depending on how many images need to be processed simultaneously.
We compare the runtime of our LSTM motion model with the Kalman Filter (KF3D) baseline, and
find that the LSTM is slower (0.072s vs. 0.016s). However, we observe that the majority of the total
runtime is occupied by the 3D detection method, while our data association and motion modeling
is responsible only for a minor part of the total runtime. We ablate the effect of using different
detectors with our method in section B. Note that the motion model used affects the association
results, which influences the runtime of the data association.

E Qualitative results

We show qualitative results on the Waymo Open and NuScenes datasets in Figure 1, Figure 2 and
Figure 3, respectively. We plot the 3D bounding boxes in the image view and depict object identity
as box color. For NuScenes, we provide both front and back cameras results and show that our CC-
3DT can associate the objects across camera borders.
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Front Left Front Front Right

Figure 1: Qualitative results of our tracker on the Waymo Open validation split. Note the consistent
identity of objects moving along camera borders.
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Front Left Front Front Right

Figure 2: Qualitative results of our tracker on the front camera of the NuScenes validation split.
Note the consistent identity of objects moving along camera borders.
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Back Left Back Back Right

Figure 3: Qualitative results of our tracker on the back cameras of the NuScenes validation split.
Note the consistent identity of objects moving along camera borders.

6



References
[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,

and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In IEEE Conference
on Computer Vision and Pattern Recognition, 2020.

[2] Y. Wang, V. Guizilini, T. Zhang, Y. Wang, H. Zhao, , and J. M. Solomon. Detr3d: 3d object
detection from multi-view images via 3d-to-2d queries. In The Conference on Robot Learning
(CoRL), 2021.

[3] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai. Bevformer: Learning bird’s-
eye-view representation from multi-camera images via spatiotemporal transformers. arXiv
preprint arXiv:2203.17270, 2022.

[4] J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, and F. Yu. Quasi-dense similarity learning for
multiple object tracking. In IEEE Conference on Computer Vision and Pattern Recognition,
2021.

[5] T. Fischer, J. Pang, T. E. Huang, L. Qiu, H. Chen, T. Darrell, and F. Yu. Qdtrack:
Quasi-dense similarity learning for appearance-only multiple object tracking. arXiv preprint
arXiv:2210.06984, 2022.

[6] H.-N. Hu, Y.-H. Yang, T. Fischer, T. Darrell, F. Yu, and M. Sun. Monocular quasi-dense 3d
object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[7] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In
IEEE Conference on Computer Vision and Pattern Recognition, 2020.

[8] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[9] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká. 3D bounding box estimation using deep
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