Appendix

A Related Work

Global Planning Search-based planning algorithms, such as A* [? 1, 2], discretize the state space
and perform a graph search to find an optimal path. While the graph search can be fast, complete,
and guaranteed optimal, the requirement to construct a discrete graph hinders these algorithms in
continuous spaces and for novel problems not well covered by the current graph. Sampling-based
planners [3] function in a continuous state space by drawing samples and building a tree. When the
tree has sufficient coverage of the planning problem, the algorithm traverses the tree to produce the
final plan. Sampling-based planners are continuous, probabilistically complete, i.e. find a solution
with probability 1, and some are even asymptotically optimal [4, 5, 6], but under practical time
limitations, their random nature can produce erratic—though valid—paths.

Both of the aforementioned planner types are designed to optimize for path length in the given state
space (e.g. configuration space) while avoiding collisions. An optimal path in configuration space
is not necessarily optimal for the end effector in cartesian space. Human motion tends to minimize
hand distance traveled [7], so what appears optimal for the algorithm may be unintuitive for a human
partner or operator. In the manipulation domain, goals are typically represented in end effector task
space [8, 9]. In a closed loop setting with a moving target, the traditional process of using IK to map
task to configuration space can produce highly variable configurations, especially around obstacles.
Motion Optimization [10, 11, 12] on the other hand, generates paths with non-linear optimization
and can consider multiple objectives such as smoothness of the motion, obstacle avoidance, and
convergence to an end effector pose. These algorithms require careful tuning of the respective cost
functions to ensure convergence to a desirable path and are prone to local minima. Furthermore,
non-linear optimization is computationally complex and can be slow for difficult planning problems.

Imitation Learning Inverse Reinforcement Learning [13, 14, 15] typically assumes expert optimal-
ity and learns a cost function accordingly, whereas Behavior Cloning [16, 17] directly learns the
state-action mapping from demonstrations, regardless of the expert’s optimality. We thus employ
behavior cloning because producing optimal plans for continuous manipulation problems is chal-
lenging. Recent work demonstrates behavior cloning’s efficacy for fine-grained manipulation tasks,
such as chopstick use [18] and pick-and-place [19]. For long-horizon tasks like ours, however, distri-
butional shift and data variance can hinder behavior cloning performance. Distribution shift during
execution can lead to states unseen in training data [18]. Complex tasks often have a long tail of
possible action states that are underrepresented in the data, leading to high data variance [20]. There
are many techniques to address these challenges through randomization, noise injection, regret op-
timization, and expert correction [18, 21, 22, 23, 24]. These techniques, however, have not been
demonstrated on a problem of our scale and complexity (see Appendix E for details on the range of
data).

B Failure Modes Across All Test Sets

In the main paper, we presented the breakdown of the failure modes on the set of problems solvable
by both the global and hybrid planners. In this section, we present the failure modes separately
across the two test sets. The Global Planner-solvable test set is consistently the hardest for all
methods, having the highest collision rates and target error. While STORM and Fabrics both see
significant increases in target error, the change in collision rate is minor. When trained with the
Global Expert, MTNets has the highest collision rate across all test sets, yet it also has the most
consistent rollout accuracy. We attribute the collision rate to inconsistency in the Global Planner’s
motion and the rollout accuracy to the high coverage of the problem space. When evaluated on
the Global Planner-solvable test set, MmNets trained with the Hybrid Expert also has its highest
collision rate. We attribute this to distribution shift in the problem space.

C Expert Pipelines

We present more details of our planning pipeline in this section.

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm S5cm 15° 30°

G. Fabrics [25] 8.17 0.00 0.39 68.56 73.33 82.06 84.00
STORM [26] 0.39 0.11 0.28 83.11 85.33 90.00 91.61
MmrNets (Ours)
Hybrid Expert 0.89 0.00 0.00 98.83 99.61 98.83 99.28
Global Expert 15.94 0.00 0.00 99.00 99.83 97.06 99.28

Table 1: Failure Modes on problems solvable by the hybrid planner

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm 5cm 15° 30°
G. Fabrics [25] 7.83 0.50 0.33 45.67 57.33 74.39 78.22
STORM [26] 1.94 0.11 0.28 71.33 78.22 64.44 72.67
MmnNets (Ours)
Hybrid Expert 11.00 0.78 0.00 87.72 93.17 84.56 88.56
Global Expert 21.94 0.00 0.00 97.94 99.50 96.56 99.22

Table 2: Failure Modes on problems solvable by the global planner

Global Planner is composed of widely used off-the-shelf components. We first use inverse kine-
matics to convert our task space goals to configuration space, followed by AIT* [27] in configuration
space, and finally, spline-based, collision-aware trajectory smoothing [28]. We use IKFast [29] for
inverse kinematics, OMPL [30] for AIT*, and Pybullet Planning for the smoothing implementa-
tion [31]. To manage the compute load when generating a large dataset of trajectories, we employed
a time-out with AIT* of 20 seconds.

Hybrid Expert is designed to produce consistent motion in task space. We start by using AIT* [27]
with a 2 second timeout to plan for a floating end effector, i.e. one not attached to a robot arm, and
then use Geometric Fabrics [25] to follow the path. Geometric Fabrics are deterministic and geomet-
rically consistent [25] local controllers, but they struggle to solve the problems in our dataset without
assistance from a global planner. Geometric Fabrics are highly local, and even with dense waypoints
given by a global planner, they can run into local minima, which in turn generate trajectories with
highly variable velocity. We use a combination of spline-based smoothing and downsampling [32]
to create a consistent configuration space velocity profile across our dataset.

Consistency We use the term consistency to describe a qualitative characteristic of a planner and
its learnability. Specifically, we use it to describe two quantities: 1) expert quality and 2) repeata-
bility of the planner. Mandlekar et al. [19] demonstrate how Imitation Learning performance varies
depending on expert quality. Among the metrics they use to describe expert quality, they demon-
strate the importance of expert trajectory length. M7Nets employs task-space goals, and the Hybrid
Planner produces shorter task-space paths. Across our test dataset of global and hybrid solvable
problems, the Hybrid Planner’s end effector paths average 57cm + 31cm and the total orientation
distance traveled is 95° + 52°. Meanwhile, the Global Planner’s paths average 61cm + 39cm and
113° + 55°, respectively.

Repeatable input-output datasets are important for deep learning systems. Prior works have shown
that deep learning systems deteriorate or require more data when using noisy labels [33, 34]. Both
the Global Planner and Hybrid Planner are sampling-based planners and do not produce repeatable
paths by their very nature. Yet, the Hybrid Planner uses sampling to plan in a lower-dimensional
state space—6D pose space—while the Global Planner samples in 7D configuration space. We use
a naive sampler, so the lower dimensionality of the Hybrid Planner’s sampler implies that its typical
convergence rate will be faster. After planning, the Hybrid Planner employs Geometric Fabrics [25]
to follow the task-space trajectory. Geometric Fabrics are deterministic, which further promotes
repeatability in the final, configuration space trajectories. Meanwhile, the Global Planner uses
a randomized smoothing algorithm that is not deterministic. Taking these individual components
together, we expect the Hybrid Planner’s solutions on similar problems to be typically more alike
than the Global Planner’s solutions to the same problems.

D Network Architecture

Our PointNet++ architecture has three set abstraction groups followed by three fully connected
layers. The first set abstraction layer performs iterative furthest point sampling to construct a set of
512 points, then it does a grouping query within Scm of at most 128 points. Finally, there is a local
PointNet [35] made up of layers of size 4, 64, 64, 64 respectively. The second set abstraction is lower
resolution, sampling 128 furthest points and then grouping at most 128 points within a 30cm radius.
The corresponding PointNet is made up of layers of size 64, 128, 128, and 256 respectively. Our
third set abstraction layer skips the furthest point sampling, groups all points together, and uses a
final PointNet with layers of size 256, 512, 512, 1,024 respectively. Finally, after the set abstraction
layers, we have three fully connected layers with 4,096, 4,096, and 2,048 dimensions respectively.
In between these layers, we use group norm and Leaky ReL.U.

The output of our point cloud encoder is a 2,048 dimensional embedding. The robot configura-
tion encoder and the displacement decoder are both fully connected multilayer perceptrons with
Leaky ReLU activation functions [36]. The robot configuration encoder maps our 7-dimensional
input to a 64-dimensional output and has four hidden layers with 32, 64, 128, and 128 dimensions
respectively. The displacement decoder maps the combined embeddings from the point cloud and
robot configuration encoders, which together have 2,112 dimensions, to the 7 dimensional normal-
ized displacement space. The decoder has three hidden layers with 512, 256, and 128 dimensions
respectively. Our entire architecture together has 19 million parameters.

E Data Generation Pipeline

Figure 1: MmNets is trained with a dataset consisting of solutions to 3.27 million unique planning
problems across over 575,000 unique, procedurally generated environments.

We used the same procedural data generation pipeline to generate data for training as well as infer-
ence test problems. We will be releasing the code to generate the data alongside our generated data
sets upon publication.

Tabletop The dimensions of the table, including height, are randomized, as well as whether the table
has an L-bend around the robot. The table itself is always axis-oriented. Table height ranges from 0
to 40cm. Table edges are chosen independently, e.g. the maximum x value for a table is chosen from
a uniform distribution, and the center of the tables is not fixed. The front table can range between 90
and 110cm deep and between 205 and 240cm wide. When there is an L-bend, the side table ranges
from 90 to 247.5cm deep and 42.5 to 72.5cm wide. After generating the table, a random assortment
of boxes and cylinders are placed on the table facing upward, i.e. cylinders are on their flat edge.
There are between 3 and 15 objects in each scene. These objects are between 5 and 35cm tall. The
side dimensions of the boxes, as well as the radius of the cylinders, are between 5 and 15cm.

Cubby The dimensions of the cubby, the wall thickness, the number of cubbies, and the orientation
of the entire fixture are randomized. We start by constructing a two-by-two cubby and then modify
it to randomize the number of cubby holes. The wall thickness is chosen to be between 1 and 2cm.
Similar to the tabletop, cubby edges are chosen independently, which implicitly set the center. The
overall fixture is ranges from 120 to 160cm wide, 20 to 35cm deep, and between 30 and 60cm tall.
The horizontal and vertical center dividers are then placed randomly within a 20cm range. Finally,
we apply a random yaw rotation of up to 40°around the fixture’s central axis. For roughly half of
the cubby environments, we modify the cubby to reduce the number of cubby holes. To do this, we

select two random, collision-free robot configurations in two separate cubby holes and then merge
the cubby holes necessary to create a collision-free path between them.

Dresser The dimensions of the dresser, the placement of the drawers, and the orientation of the entire
fixture are randomized. The dresser side walls, drawer side walls, and drawer faces are always 1,
1.9, and 0.4cm thick respectively. Unlike the other two environments, the dimensions for the dresser
are chosen randomly, as is the center point for the fixture. The dresser dimensions range from 80
to 120cm wide, 20 to 40cm deep, and 55 to 85cm tall. The dresser is always placed on the ground
randomly in the reachable space of the robot, with a random orientation around its central yaw axis.
We next construct the drawers. We randomly choose a direction in which to split the dresser and
then split it into two drawers. We perform this recursively within each drawer, stopping according
to a decaying probability function. Finally, we open two drawers within reachable space.

Initial Configurations and Target Poses After generating a random fixture, we search for valid
start and goal configurations. We first look for target poses with reasonable orientations—in a grasp-
ing pose for the tabletop, pointing approximately inward for a cubby, or pointing approximately
downward in a drawer. We choose pairs of these targets, solve for a collision-free inverse kinemat-
ics solution for each target, and consider these configuration space solutions to be candidates for
the start or end of a trajectory. We also add a set of collision-free neutral configurations to the mix.
These neutral configurations are generated by adding uniform randomness to a fixed neutral con-
figuration. From this set of task-space targets and corresponding collision-free configuration space
solutions, we select pairs to represent a single planning problem. For each pair selected, we use the
Global Planner to verify that a smooth, collision-free planning solution exists.

F Training M7Nets

MmNets is trained for single-step prediction, but during inference, we use it recursively for closed-
loop rollouts. The compounded noise in subsequent inputs equates covariate shift [22, 24]. To
promote robustness, we augment our training data with random perturbations in two ways. We apply
Gaussian noise to the joint angles of each input configuration, which in turn affects the corresponding
points in the point cloud, passed as input to the network [18, 37]. Additionally, for each training
example, we generate a unique point cloud during training, i.e. during each epoch, the network sees
163.5M unique point clouds. We train our network with a single set of weights across our entire
dataset.

We implemented M7Nets in PyTorch and used the Adam optimizer with a learning rate of 0.0004.
We trained it across 8 NVIDIA Tesla V100 GPUs for a week.

G Inference with M7Nets

We used separate inference hardware for our simulated experiments and the hardware demonstra-
tions For our simulated experiments, we use a desktop with CPU Intel(R) Core(TM) 19-9820X CPU
@ 3.30GHz, GPU NVIDIA A6000, and 64GB of RAM. For our hardware demonstrations, we used
a desktop with CPU Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, GPU NVIDIA Titan RTX, and
32GB of RAM.

H Quantitative Metrics

Success Rate A trajectory is considered a success if the rollout position and orientation target
errors are below 1 cm and 15° respectively and there are no physical violations. To avoid erroneously
passing a trajectory that ends on the wrong side of a narrow structure, we also ensure that the end
effector is within the correct final volume and likewise avoids incorrect volumes. For the cubby and
dresser environments, these volumes are individual cubbies or drawers.

Time After setting up each planning problem, we measured the wall time for each successful
trajectory. We also measure Cold Start (CS) Time, the average time to react to a new planning
problem. While both expert pipelines have to compute the entire path, the local controllers only
need time to compute a single action. We only consider the cold-start time here, but if the new

planning problem is sufficiently similar to a previous one—such as a minor change in the environment
or target—a global planning system could employ an optimizer that can replan quickly [38].

Rollout Target Error We calculate both position and orientation errors from the target for the
final end effector pose in the trajectory. We measure position error with Euclidean distance and
orientation error with the metric described by Wunsch et al. [39].

Collisions A trajectory can have two types of fatal collisions—when the robot collides with itself
or when the robot collides with the scene. When checking for collisions, we use an ensemble of
collision checkers to ensure fairness. Collision checking varies across algorithmic implementations,
e.g. our AIT* implementation uses meshes to check scene collisions, while STORM [26] and Geo-
metric Fabrics [25] use a sphere-based approximation of the robot’s geometry. A trajectory is only
considered to be in collision if the entire ensemble agrees.

Smoothness We use Spectral Arc Length (SPARC) [40] to measure smoothness. Balasubrama-
nian et al. [40] use a SPARC threshold of —1.6 as sufficiently smooth for reaching tasks. This
measurement qualitatively describes the behavior of our benchmark algorithms well, so we used the
same threshold for sufficiency. We therefore consider a path to be smooth if both its joint-space
trajectory and end effector trajectory have SPARC values below —1.6.

I Local Policy Implementations

Both STORM [26] and Geometric Fabrics [25] require expert tuning to achieve compelling perfor-
mance, and we worked closely with the authors of these papers to tune them as best as possible for
our evaluation. We train a single network on all three environment types, so similarly use a single
set of tuning parameters for each algorithm over the entire evaluation set.

J MPNets Implementation and Data

In the original paper, Qureshi et al. [41] trained MPNets for execution on the Baxter robot using a
dataset of 10 different tabletop environments, each with 900 plans. Then, it was evaluated in the
same environments using 100 unseen start and goal configurations in each. In total, their real-robot
dataset was 10,000 problems.

To compare fairly to MPNets, we generated an analogous set of 10,000 problems
within 10 tabletop environments, which we call the MPNets-Style dataset. We re-
implemented the MPNets-algorithm based on their open-source implementation at
https://github.com/anthonysimeonov/baxter_mpnet_experiments.

After we trained our implementation of their model on the MPNets-Style data, it achieved a similar
success rate as the one quoted in their paper for the Baxter experiments (78% vs. 85%). We attribute
the performance difference to the increased complexity of our environments, which, unlike the orig-
inal dataset, have varying table geometry in addition to object placement. In the original paper, they
quote planning as taking 1 second on average. Our re-implementation took 2.47 seconds on average
with a median of 0.02 seconds. Again, we attribute this difference to the increased complexity, given
that the median time is so far below the mean. Just as they do in the open source implementation, we
employ hierarchical re-planning, but we do not fall back to a traditional planner. If given access to
a collision checker, both M7Nets and MPNets can use a similar fallback to re-plan, thus achieving
theoretically complete performance.

We used the same training setup described in Appendix F to train MPNets. When trained on the
MmNets data set, i.e. 3.27M demonstrations from theHybrid Planner, MPNets converged within 15
hours.

K Additional Experiments

Training with Mean Squared Error Loss Increases Collisions When trained with a loss of mean-
squared-error in configuration space, M7 Nets has a similar success rate-94.56% vs. 95.33%-but
the scene collision rate is significantly higher at 2.39% vs 0.89%.

https://github.com/anthonysimeonov/baxter_mpnet_experiments

Representing the Target in Point Cloud Improves
Performance When trained with the target fed ex-
plicitly through a separate MLP encoder as a posi-
tion and quaternion, MmNets succeeds less—88.83%
vs. 95.33% when the target is specified within the
point cloud. In particular, only 91.61% of trajecto-
ries get within 1cm of the target vs. 98.83% with the
point cloud-based target.

Success Rate (%)

Training with Collision Loss Improves Colli- 05 5 : L : m
sion Rate When trained without the collision loss, Gaussian Point Cloud Noise o (cm)
M Nets collides more often—2.11% vs 0.89% when

. . .. Figure 2: After injecting Gaussian noise into
trained with the collision loss. & J &

the point clouds, M7Nets performance stays
Training with the Configuration Encoder Im- fairly constant up until 0 = 3cm when suc-
proves Success Rate When trained with no robot cess rate is 89.28%.

configuration encoder, i.e. with only the point cloud

encoder, M7 Nets has a success rate of 94.17% vs 95.33% when trained with both encoders.

M~ Nets is Robust to Point Cloud Noise Up to 3.2cm Figure 2 shows MmNets success rate on
the set of problems solvable by both planners when random Gaussian noise is added to the point
cloud. Model performance stays above 90% until noise reaches 3cm at which point success drops
t0 89.28%.

M Nets is Robust to Varying Point Cloud Shapes To evaluate performance in out-of-distribution
geometries, we replaced all tabletop objects in the test set of problems solvable by the Hybrid Plan-
ner with randomly meshes from the YCB dataset [42]. For each tabletop primitive, we sampled
a mesh from the dataset and transformed it so that the bounding boxes of the primitive and mesh
were aligned and of identical size. Note that in these modified scenes, the primitives-based Hybrid
Planner solution is still valid. MmNets succeeded in 88.33% in this YCB-tabletop test set, whereas
with the original primitives, it succeeds in 94.67%. Note that the network was not trained with
these geometries—we would expect even higher performance if these meshes were included in the
training set.

MnNets is Not Suitable for Unsolvable Problems To evaluate performance on unsolvable prob-
lems, we generated a set of 800 planning problems in randomized tabletops where the target is in
collision with the table or an object on the table. When used for these problems, MmNets showed a
64.25% collision rate.

M Nets is Not Improved by Combining Experts We trained MmNets-C on a combination of
3.27M demonstrations each from the Hybrid Planner and Global Planner. Environments may have
overlapped in these data sets, but entire problems, i.e. environment, start, and goal, did not. In
problems solvable by the global planner, MmNets-C—Ilike M7 Nets-G—outperformed MmNets-H in
terms of target convergence (97.17% vs 87.72%). While its collision rate is lower than MmNets-G,
(18.56% vs 21.94%) MmNets-C’s collision rate is still significantly higher than MmNets-H (11%).
The behavior of MmNets-C is essentially an average of MmNets-G and MmNets-H, which we at-
tribute to the lack of easily learnable obstacle avoidance behavior by the Global Planner. These
demonstrations equate to additional noise in the training data, which creates less successful obsta-
cle avoidance behavior. In future work, we intend to explore how to robustly combine experts for
improved performance.

L Dynamic Environments

MmNets is an instantaneous policy that assumes a static world at the time of inference. If the scene
changes between inference steps, the policy will react accordingly. If the environment is continually
changing—as is often the case in dynamic settings—MmNets implicitly approximates the dynamic
movement as a sequence of static motions. When the scene changes are slow, this assumption works
well. When the changes are fast, it does not. To demonstrate this, we evaluated M7Nets in a
static tabletop environment with a single, moving block placed on the table. We generated 1,000
planning problems across the table with the block placed at different locations. We specifically
chose problems where M7Nets succeeds when the block is stationary. When moving, the block

follows a periodic curve in x and y, but the two curves have indivisible periods, preventing repetitive
movement. We then moved the block at three different speeds: slow, medium, and fast and measured
the success rate. At these speeds, MmNets succeeds 88.1%, 57.4%, and 28.3% respectively.

M Real-World Experiments

We demonstrated MmNets in a variety of tabletop problems using a Franka Emika Panda 7-DOF
manipulator. A calibrated Intel Realsense L515 RGB-D camera is placed in front of the robot’s
workspace, viewing the table and potential obstacles on top of it. Point cloud measurements are
filtered to remove all points belonging to the robot geometry. The remaining cloud is downsampled
to 4096 points and treated as the obstacle. The filtering process runs at 9 Hz. We investigated two
different control methods:

Open-Loop Motion: Using a fixed, user-defined goal location and the current depth observation,
MmNets is rolled out over 80 timesteps or until goal convergence. The resulting path is used to com-
pute a time-parametrized trajectory [43] which is then tracked by a position controller. The videos
listed under “Open Loop Demonstrations” at https://mpinets.github.io show a mix of sequential mo-
tions toward pre-defined goals. In some of the examples, the objects are static throughout the video
and in others, we re-arrange the objects throughout the video. Despite the changing scene, these are
still open-loop demos. While the motions adapt to changing obstacles in the scene, the policy only
considers scene changes that happen before the execution of a trajectory. This is because the point
cloud observations are only updated once the robot reaches its previous target.

Closed-Loop Motion: To account for dynamic obstacles MmNets is rolled out for a single
timestep at the same frequency as the point cloud filter operates (9 Hz). A time-parametrized tra-
jectory is generated by linearly interpolating ~ 70% of the rolled out path. As in the open-loop
case, the resulting trajectory is tracked by a PD controller at 1 kHz. The videos listed under “Closed
Loop, Dynamic Scene Demonstrations” at https://mpinets.github.io show examples of boxes thrown
into the robot’s path while it is moving towards a user-defined target. The evasive maneuver shows
MmNets’ ability to react to dynamic obstacles.

N Limitations

Training Distribution The limitations of the Hybrid Planner translate to limitations in the trained
policy network. Certain target poses and starting configurations can create unanticipated behavior.
When target poses are narrowly out of distribution, the rollout fails to converge to the target, but
as a target poses drifts further from the training distribution, behavior becomes erratic. Likewise,
random, initial configurations—such as from rejection-sampling based inverse kinematics—can create
unexpected behavior, but we did not observe this in our real robot trials running the policy con-
tinuously to a sequence of points. With an improved expert, e.g. one with the consistency of our
Hybrid Expert and guaranteed convergence of the Global Planner, we anticipate that the occurrence
of failure cases will diminish. We also do not expect the network to generalize to wholly unseen
geometries without more training data. But, in future work, we aim to improve the generalization of
this method with more data, much in the way that Large Language Models [44] continue to improve
generalization, as well as by employing strategies to address covariate shift such as DAgger [21] and
domain adaptation.

Real Robot System When used on a real robot, performance will degrade as the robot’s physical
environment drifts from the training distribution. Likewise, performance will degrade with increas-
ing point cloud noise. In order to ensure safe operation in a real-robot system, M7 Nets could be
combined with a collision checker—either one with ground-truth or a learned, such as Scene Colli-
sion Net [45]. The collision checker could be used to a) stop the robot before hitting collisions b)
make small perturbations to nudge the policy back into distribution or ¢) enable a traditional planner
to plan to the goal. Alternatively, a safety component could be trained to detect whether the scene
is outside of the training distribution to alert the operator that MmNets is ill-equipped to handle a
particular scene.

https://mpinets.github.io
https://mpinets.github.io

Success Rate (%)
Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [27] 16.56 £0.88 100 73.50 100 56.86

Hybrid Planner 6.82+£1.50 44.33 100 100 99.22
G. Fabrics [25] 0.11+0.06 37.83 66.67 65.83 88.61
STORM [26] 3.66+£1.64 53.50 76.67 77.33 59.72

MPNets [41]
Hybrid Expert 2.68 £17.39 44.67 59.00 66.17 17.26

Random 0.06 £0.06 32.17 50.17 53.67 100.00
MmNets (Ours)

Hybrid Expert 0.33£0.08 67.00 94.33 93.17 93.06

Global Expert 0.34 £0.07 74.83 81.50 80.00 93.44

Table 3: Algorithm performance on cubby problems sets solvable by planner types. All prior meth-
ods use state-information and a oracle collision checker while M7 Nets only needs a point cloud

In a physical system, not all problems will have feasible solutions. As discussed in Appendix K,
MmNets will often collide in these scenarios, underscoring the need for some additional safety mech-
anisms to prevent catastrophic behavior. Additionally, MmNets has no concept of history and can
collide with the scene if, for example, the robot arm blocks the camera mid-trajectory. To mitigate
this, the perception system could employ a historical buffer or filter to maintain some memory of
the scene.

Emergent Behavior In some of our test problems, we observed that MmNets produces a rollout
where the final gripper orientation is 180° off from the target about the gripper’s central axis (i.e. the
central axis parallel to the fingers). In the test set of problems solvable by the Global Planner, this
occurs in 2.44% of rollouts. We suspect this behavior is due to the near-symmetry in the gripper’s
mesh about this axis. The minor differences between the two sides of the gripper may not provide
enough information for the Pointnet++ encoder to distinguish between these two orientations. While
the rollout does not match the requested problem, this behavior can be desirable in some circum-
stances. For example, because grasps are symmetric with the Franka Panda gripper, a 180° rotation
is preferable if it reduces the likelihood of a collision. For applications where this behavior is unac-
ceptable, we could replace the target representation in the point cloud with points sampled from a
mesh with no symmetry.

O Experimental Results per Environment

In this section, we present the evaluation metrics broken down by environment type. However, we
omit Cold Start Time because for global methods, it is the same as the total time and for local
methods, the type of environment does not affect startup or reaction time.

The Tabletop environment is the least challenging with the highest success rates for all methods. In
general, the dresser environment is the most challenging due to its complex geometry, as evidenced
by the high collision rates. When trained with the Hybrid Expert, MmNets has the highest rollout
target error in the cubby problems solvable by Global Planner. Since MmNets trained with the
Global Expert does not have this issue, we attribute it to a lack of adequate coverage in the training
dataset.

References

[1] M. Likhacheyv, G. J. Gordon, and S. Thrun. Ara*: Anytime a* with provable bounds on sub-
optimality. In NIPS, 2003.

[2] M. Likhacheyv, D. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun. Anytime dynamic a*: An
anytime, replanning algorithm. In ICAPS, 2005.

% Within
% Env. Coll. % Self Coll. % Int Viol. lcm Scm 15° 30°

G. Fabrics [25] 5.00 0.17 0.67 40.17 57.83 84.67 89.17
STORM [26] 0.50 0.00 0.50 79.33 85.33 69.17 80.33
M Nets (Ours)
Hybrid Expert 10.67 0.17 0.00 75.83 84.50 75.83 81.67
Global Expert 23.17 0.00 0.00 99.17 100.00 99.33 100.00

Table 4: Failure Modes on cubby problems solvable by the global planner

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm 5cm 15° 30°
G. Fabrics [25] 4.83 0.00 1.00 72.50 83.00 95.83 96.33
STORM [26] 0.17 0.17 0.33 87.33 89.33 89.17 91.67
MmrNets (Ours)
Hybrid Expert 0.50 0.00 0.00 99.83 99.83 100.00 100.00
Global Expert 16.67 0.00 0.00 99.50 100.00 99.83 100.00

Table 5: Failure Modes on cubby problems solvable by the hybrid planner

[3] S. M. LaValle. Rapidly-exploring random trees : a new tool for path planning. The annual
research report, 1998.

[4] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The
International Journal of Robotics Research, 30:846 — 894, 2011.

[5] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (bit*): Sampling-based
optimal planning via the heuristically guided search of implicit random geometric graphs. 2015
IEEE International Conference on Robotics and Automation (ICRA), pages 3067-3074, 2015.

[6] M. P. Strub and J. D. Gammell. Advanced bit* (abit*): Sampling-based planning with ad-
vanced graph-search techniques. 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 130-136, 2020.

[71 Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in human
multijoint arm movement. Biological Cybernetics, 61:89—101, 1989.

[8] A.H. Qureshi, A. Mousavian, C. Paxton, M. C. Yip, and D. Fox. Nerp: Neural rearrangement
planning for unknown objects. ArXiv, abs/2106.01352, 2021.

[9] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438-13444, 2021.

[10] N. D. Ratliff, M. Zucker, J. A. Bagnell, and S. S. Srinivasa. Chomp: Gradient optimization
techniques for efficient motion planning. 2009 IEEE International Conference on Robotics
and Automation, pages 489-494, 2009.

[11] J. Schulman, Y. Duan, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,
and P. Abbeel. Motion planning with sequential convex optimization and convex collision
checking. The International Journal of Robotics Research, 33:1251 — 1270, 2014.

[12] N.D. Ratliff, M. Toussaint, and S. Schaal. Understanding the geometry of workspace obstacles
in motion optimization. 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 4202-4209, 2015.

[13] S.J. Russell. Learning agents for uncertain environments (extended abstract). In COLT’ 98,
1998.

% Within

% Env. Coll. % Self Coll. % Jnt Viol. lcm 5cm 15° 30°
G. Fabrics [25] 5.00 0.00 1.17 72.33 84.33 96.33 97.33
STORM [26] 0.00 0.00 0.00 88.33 89.00 89.33 91.67
MmnNets (Ours)
Hybrid Expert 0.50 0.00 0.00 99.83 100.00 99.83 100.00
Global Expert 18.17 0.00 0.00 99.00 100.00 100.00 100.00

Table 6: Failure Modes on cubby problems solvable by both the global and hybrid planners

Success Rate (%)
Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [27] 16.97 £ 0.81 100 66.83 100 75.63

Hybrid Planner 9.19+£2.81 37.33 100 100 99.82
G. Fabrics [25] 0.26 £0.12 15.00 25.83 28.50 78.94
STORM [26] 5.54+1.84 24.17 58.50 62.00 83.22

MPNets [41]
Hybrid Expert 15.55 +£46.31 12.83 41.83 41.67 26.68

Random 1.61 +7.38 8.33 27.50 31.17 100.00
MmNets (Ours)

Hybrid Expert 0.34 £0.06 78.67 97.00 96.33 91.56

Global Expert 0.33£0.05 7233 77.33 82.17 94.89

Table 7: Algorithm performance on dresser problems sets solvable by planner types. All prior
methods use state-information and a oracle collision checker while MmNets only needs a point
cloud

[14] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, page 663—670,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

[15] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforce-
ment learning. In AAAI, 2008.

[16] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In NIPS, 1988.

[17] M. Bain and C. Sammut. A framework for behavioural cloning. In Machine Intelligence 15,
1995.

[18] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. S. Srinivasa. Grasping with chopsticks:
Combating covariate shift in model-free imitation learning for fine manipulation. 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6185-6191, 2021.

[19] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martin-Martin. What matters in learning from offline human demonstrations
for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

[20] F. Codevilla, E. Santana, A. M. L6pez, and A. Gaidon. Exploring the limitations of behav-
ior cloning for autonomous driving. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9328-9337, 2019.

[21] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, 2011.

[22] S.Ross and A. Bagnell. Efficient reductions for imitation learning. In International Conference
on Artificial Intelligence and Statistics, page 661-668, 2010.

[23] M. Laskey, J. N. Lee, R. Fox, A. D. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In CoRL, 2017.

10

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm Scm 15° 30°

G. Fabrics [25] 17.17 0.83 0.17 19.83 26.33 57.83 62.33
STORM [26] 4.83 0.17 0.33 42.67 51.67 45.17 53.83
M Nets (Ours)
Hybrid Expert 17.00 0.83 0.00 98.00 98.67 93.50 94.33
Global Expert 26.67 0.00 0.00 100.00 100.00 99.00 99.83

Table 8: Failure Modes on dresser problems solvable by the global planner

% Within
% Env. Coll. % Self Coll. % Int Viol. lecm Scm 15° 30°
G. Fabrics [25] 18.33 0.00 0.17 36.00 39.00 61.00 66.00
STORM [26] 0.83 0.00 0.33 65.33 67.67 90.17 91.00
MmNets (Ours)
Hybrid Expert 1.50 0.00 0.00 99.50 99.50 98.83 99.00
Global Expert 19.67 0.00 0.00 100.00 100.00 97.33 99.50

Table 9: Failure Modes on dresser problems solvable by the hybrid planner

S.Ross, G. Gordon, and A. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In arXiv preprint arXiv:1011.0686, 2010.

K. V. Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. N. Peele, Q. Wan, 1. Akinola, B. Sun-
daralingam, D. Fox, B. Boots, and N. D. Ratliff. Geometric fabrics: Generalizing classical

mechanics to capture the physics of behavior. IEEE Robotics and Automation Letters, 7:3202—
3209, 2022.

M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox, F. Ramos, and B. Boots.
STORM: An integrated framework for fast joint-space model-predictive control for reactive
manipulation. 2021.

M. P. Strub and J. D. Gammell. Adaptively informed trees (ait*): Fast asymptotically optimal
path planning through adaptive heuristics. 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 3191-3198, 2020.

K. K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator trajectories using op-
timal bounded-acceleration shortcuts. 2010 IEEE International Conference on Robotics and
Automation, pages 2493-2498, 2010.

R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD the-
sis, Carnegie Mellon University, Robotics Institute, August 2010. URL http://www.
programmingvision.com/rosen_diankov_thesis.pdf.

I. A. Sucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72-82, December 2012. doi:10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.

C. R. Garrett. Pybullet planning. https://pypi.org/project/pybullet-planning/,
2018.

K. K. Hauser. Fast interpolation and time-optimization on implicit contact submanifolds. In
Robotics: Science and Systems, 2013.

I. Misra, C. L. Zitnick, M. Mitchell, and R. B. Girshick. Seeing through the human reporting
bias: Visual classifiers from noisy human-centric labels. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2930-2939, 2016.

A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache. Learning visual features from large
weakly supervised data. In ECCV, 2016.

11

http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://dx.doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org
https://pypi.org/project/pybullet-planning/

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm Scm 15° 30°

G. Fabrics [25] 19.50 0.33 0.17 40.00 42.67 64.50 68.17
STORM [26] 1.17 0.17 0.50 69.50 72.83 91.00 92.33
M Nets (Ours)
Hybrid Expert 1.83 0.00 0.00 99.67 99.67 98.50 98.67
Global Expert 14.50 0.00 0.00 100.00 100.00 96.83 99.17

Table 10: Failure Modes on dresser-problems solvable by both the global and hybrid planners

Success Rate (%)
Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [27] 16.01 £0.74 100 95.00 100 28.27

Hybrid Planner 6.43£1.18 69.00 96.33 100 100
G. Fabrics [25] 0.14+0.07 6250 85.50 85.83 88.61
STORM [26] 349+£1.65 73.00 88.33 88.67 43.83
MPNets [41]
Hybrid Expert 1.36 £7.98 65.67 94.00 94.50 8.23
Random 0.05+£0.05 58.17 85.83 89.67 99.94
MmnNets (Ours)
Hybrid Expert 0.33£0.10 81.67 94.67 95.67 96.83
Global Expert 0.33+0.11 78.00 82.33 86.17 80.67

Table 11: Algorithm performance on tabletop problems sets solvable by planner types. All prior
methods use state-information and a oracle collision checker while MmNets only needs a point
cloud

[35] C. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classifica-
tion and segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 77-85, 2017.

[36] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing, 2013.

[37] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. Conference on Robot Learning, pages 143—-156, 2017.

[38] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots. Continuous-time Gaussian process
motion planning via probabilistic inference. volume 37, pages 1319-1340, 2018.

[39] P. Wunsch, S. Winkler, and G. Hirzinger. Real-time pose estimation of 3d objects from cam-
era images using neural networks. Proceedings of International Conference on Robotics and
Automation, 4:3232-3237 vol.4, 1997.

[40] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet. On the analysis
of movement smoothness. Journal of NeuroEngineering and Rehabilitation, 12, 2015.

[41] A. H. Qureshi, M. J. Bency, and M. C. Yip. Motion planning networks. 2019 International
Conference on Robotics and Automation (ICRA), pages 2118-2124, 2019.

[42] B. Calli, A. Singh, A. Walsman, S. S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object
and model set: Towards common benchmarks for manipulation research. 2015 International
Conference on Advanced Robotics (ICAR), pages 510-517, 2015.

[43] T. Kunz and M. Stilman. Time-optimal trajectory generation for path following with bounded

acceleration and velocity. Robotics: Science and Systems VIII, pages 1-8, 2012.

12

[44]

[45]

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm S5cm 15° 30°

G. Fabrics [25] 1.33 0.50 0.17 77.00 87.83 80.67 83.17
STORM [26] 0.50 0.17 0.00 92.00 97.67 79.00 83.83
MmrNets (Ours)
Hybrid Expert 5.33 1.33 0.00 89.33 96.33 84.33 89.67
Global Expert 16.00 0.00 0.00 94.67 98.50 91.33 97.83

Table 12: Failure Modes on tabletop problems solvable by the global planner

% Within
% Env. Coll. % Self Coll. % Int Viol. lcm S5cm 15° 30°
G. Fabrics [25] 1.33 0.00 0.00 97.17 98.00 89.33 89.67
STORM [26] 0.17 0.17 0.17 96.67 99.00 90.67 92.17
MmrNets (Ours)
Hybrid Expert 0.67 0.00 0.00 97.17 99.50 96.17 98.83
Global Expert 11.50 0.00 0.00 97.50 99.50 94.00 98.33

Table 13: Failure Modes on tabletop problems solvable by the hybrid planner

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In arXiv:2103.00020, 2021.

M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. Object rearrangement using learned
implicit collision functions. 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6010-6017, 2021.

13

% Within
% Env. Coll. % Self Coll. % Jnt Viol. lcm Scm 15° 30°

G. Fabrics [25] 1.33 0.00 0.00 97.33 98.50 89.50 89.83
STORM [26] 0.17 0.17 0.17 97.17 99.33 90.50 91.83
MmrNets (Ours)
Hybrid Expert 0.50 0.00 0.00 97.33 99.50 96.33 98.33
Global Expert 8.67 0.17 0.00 97.00 99.67 95.83 98.17

Table 14: Failure Modes on tabletop problems solvable by both the global and hybrid planners

14

	Related Work
	Failure Modes Across All Test Sets
	Expert Pipelines
	Network Architecture
	Data Generation Pipeline
	Training MNets
	Inference with MNets
	Quantitative Metrics
	Local Policy Implementations
	MPNets Implementation and Data
	Additional Experiments
	Dynamic Environments
	Real-World Experiments
	Limitations
	Experimental Results per Environment

