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1 Experiment Videos

We perform thorough real-world analysis of our framework and our custom-built legged manipulator.
We urge the reader to look at the compiled result videos at https://maniploco.github.io. As
we can see in the video, legs and arm function in coordination with each other where legs bend and
stretch to increase the reach of the arm as well as to attain stability.

2 Regularized Online Adaptation Details

Algorithm 1 Regularized Online Adaptation

1: Randomly initialize privileged information encoder p, adaptation module ¢, unified policy 7
2: Initialize with empty replay buffer D

3: foritr =1,2,...do

4 for: =1,2,..., Nepy, do

5: Sg, €9 < envs[i].reset()

6: fort=0,1,...,T do

7: if itr mod H == 0 then

8 2] = P(St—10:t—1, At—11:t—2)

9: ar  7((s¢, a1, zf))

10: else

11: 2 pler)

12: ar « m((s¢,ai-1,2"))

13: end if

14: St4+1, Tt < envs[i].step(at)

15: Store ((St, 6,5)7 A, Tt, (St+1, 6,5_;,.1)7 Z?, Zf‘) in D
16: end for

17: end for
18: if itr mod H == 0 then

19: Update 6, by optimizing |[sg[z}'] — 222

20: else

21: Update 0., 6,, by optimizing —J (6, 6,,) + Al|2/* — sg[2]||2, where J (6, 6,.) is the
22: advantage mixing RL objective in Section 2.1 of the main paper

23: end if

24: Empty D

25: A + Linear_Curriculum(itr)

26: end for
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We presented the details of Regularized Online Adaptation (Section 2.2 of the main paper) in
Algorithm 1. We set H to be 20. The regularization coefficient A follows a linear curriculum which

starts at 0 and stops at 1: A = min(max (=509 ), 1).

3 Simulation Details

We obtained URDF files for the quadraped and the robot arm from Unitree and Interbotix separately.
We customized the URDF files to connect the two parts rigidly. Shown in Figure 1, we use Nvidia’s
IsaacGym [1] for parallel simulation. We use fractal noise to generate the terrain. The parameters for

Figure 1: Customized simulation environment based on IsaacGym

the fractual noise are number of octaves = 2, fractal lacunarity = 2.0, fractal gain = 0.25, frequency =
10Hz, amplitude = 0.15m. We found that the generated rough terrain will enforce foot clearance and
replace the complex rewards that are needed if flat terrain is used for simulation [2].

We sample an EE position command by first sampling a spherical coordinate (I, p, y) from Table 2 of
the main paper. Then world coordinate of p*™ is obtained as T'(S2C[(L, p, y)]) + (5™, e, p2=°),
where T is the linear transformation according to the base orientation, S2C][] is the operator to
transform spherical coordinates to Cartesian coordinates, and p°**° is the base position. To encourage
smooth arm motion and whole-body coordination, we set pb*¢ to be a constant (0.53) and row and
pitch in 7" to be 0, so EE position commands are z, row, pitch-independent of the base.

We simulate each episode for a maximum of 1000 steps and terminate the episode earlier if the height
of the robot drops below 0.28m, body roll angle exceeds 0.2 radians if EE position command if on
the left of the body base (p§md > 0), or is less than —0.2 radians if EE position command is on the
right of the body base (p§md < 0), or the body pitch exceeds 0.2 radians if EE position command is
above body base (p;md > 0), or is less than —0.2 radians if EE position command is below body base
(p;md < 0). We do not early terminate if the arm self-collide and any body parts with the terrain, but
the EE command positions are sampled in a way that

The control frequency of the policy is 50Hz, and the simulation frequency is 200Hz. We
set the stiffness (/) for leg joints and arm joints to be 50 and 5 respectively and the
damping (K,4) to be 1 and 0.5 respectively. The default target joint positions for leg joints
are [-0.1,0.8,-1.5,0.1,0.8,—-1.5,-0.1,0.8,—1.5,0.1,0.8, —1.5] and for arm joints are ze-
ros. The delta range of target joint positions for leg joints is 0.45 and for arm joints are
[2.1,1.0,1.0,2.1,1.7,2.1].
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Figure 2: Advantage mixing helps the unified policy to learn to walk and grasp at the same time. Without
Advantage Mixing, the unified policy fails to learn to walk where the Episode Vel Error (episodic sum of L1
error between velocity commands and current velocities) is constantly high. In this case, the unified policy stays
at local minima of only following EE commands.

4 Training Details

The policy is a multi-layer perceptron which takes in the current state s; € R”®, which is concatenated
with the environment extrinsics z; € R?°. The first hidden layer has 128 dimensions and after that
the network splits into 2 heads, where each has 2 hidden layers of 128 dimensions. The outputs of
two heads are concatenated, where the leg actions aieg € R'? and arm actions ai™ € RS. We train
for 10000 iterations / training batches, which are 2 billions of samples and 200k gradient updates.

We list the hyperparameters of PPO [3] in Table | of the Supplementary.

5 Advantage Mixing Details

For a policy with diagonal Gaussian noise and a sampled transition batch D, the training objective
with respect to policy’s parameters 6, is

1

J(0x) = W Z log (at | s¢) A(st, at)
(s¢,at)ED
1 .
= >0 log (@™ [ somlar® | s) (AT (si, ) + A (s, a0))
| (s¢,a¢)€D
1 . )
- ﬁ Z logﬂ.(airm | St) (Amamp + ﬁAlOCO) + logﬂ(aieg | St) (ﬂAmamp + Aloco)

(s¢,a:)ED

In Figure 2 of the Supplementary, we plot the episodic velocity command following error (Episode
Vel Error) and EE comand following error (Episode EE Error) against number of steps during training.
Advantage mixing helps the unified policy to learn to walk and grasp at the same time. Without
Advantage Mixing, the unified policy fails to learn to walk where the Episode Vel Error (episodic
sum of L1 error between velocity commands and current velocities) is constantly high. In this case,

Table 1: Training Hyper-parameters

PPO clip range 0.2
Learning rate 2e-4
Reward discount factor 0.99
GAE A\ 0.95
Number of environments 5000
Number of environment steps per training batch | 40
Learning epochs per training batch 5
Number of mini-batches per training batch 4
Minimum policy std 0.2



the unified policy stays at local minima of only following EE commands by not exploring in leg
action space, since the initial exploration phase in leg action space will destabilize the base which
harms manipulation tasks.

6 Real-World Setup and Experiment Details

Table 2: Camera Parameters for Vision Tracking

Resolution 640 x 400
Frequency 10 Hz
Tag/Cam offset | (-0.02,-0.03,0.12)

Figure 3: Vision-guided tracking by using the average pose of the two AprilTags as the target pose.

Ground Points (pend) SLIIQC;):;SS + TTC | IKlIQ-’::gurei Self—l(;;Jtl:swni
Easy tasks (tested on 3 points)
Ours r(0.62,—1.27, —1.11)7 0.8 Ss - 0
MPC+IK (0.57,—1.16,0.55) 0.3 17s 0.4 0.3
| (0.58,—1.14,1.78) |
Hard tasks (tested on 5 point)
Ours [ (0.72,-0.51,0.34) T 0.8 5.6s - 0
MPC+IK (0.55,—0.75,—0.43) 0.1 22.0s 0.2 0.5
(0.56,—0.73,0.5)
(0.45,—-0.74,1.80)
| (0.45,-0.76,—1.8) |

Table 3: Comparison of our method v.s. MPC+IK on pick-up tasks. p™ is the goal position sampled from the
points on the ground. TTC is the average time to tompletion. All data are averaged on 10 real-world trials.

The robot platform is comprised of a Unitree Gol quadraped [4] with 12 actuatable DoFs, and a robot
arm which is the 6-DoF Interbotix WidowX 250s [5] with a parallel gripper. We mount the arm on
top of the quadruped. The RealSense D435 provides RGB visual information and is mounted close to
the gripper of WidowX. Both power of Gol and WidowX (60 Watts) are provided by Gol’s battery.

In real-world experiments, we directly deploy the unified policy with the adaptation module with
weights fixed onto the onboard computation of Gol, both modules operate at 50Hz. The inference of
policy and adaption module are done on Raspberry Pi 4. The software stack of the WidowX 250s
arm is setup on Nvidia TX?2 by using the official codebase at https://github.com/Interbotix/
interbotix_ros_manipulators. UDP is used as the communication protocal between Pi and
TX2. EE gripper closing and opening are not a part of the policy.

In teleoperation experiments, the gripper action is directly controlled by a joystick controller. In
vision-guided tracking experiments, we use a scripted policy to control the gripper: when the gripper


https://github.com/Interbotix/interbotix_ros_manipulators
https://github.com/Interbotix/interbotix_ros_manipulators

position is close to the desired position specified by the AprilTag [6] for 1 second, the gripper closes;
otherwise, it keeps open.

We listed the camera parameters used in vision-guided tracking in Table 2 of the Supplementary.
The “Tag/Cam offset” describes what the desired translation of the tag should be viewed in the
camera frame when using the position controller to specify desired end-effector position in spherical
coordinate. Shown in Figure 3 of the Supplementary, we also performed additional experiments on
vision-guided tracking suggested by Reviewer bkQw by using two AprilTags and averaging their
pose to get the target pose. Video results are at here. We listed the positions of ground points for
visual-guided tracking tasks in Table 3. More results on hard tasks are at here.
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