
A Code

Code and demonstrations are in https://github.com/HeegerGao/DMIL.

B Algorithm

Algorithm 1 Dual Meta Imitation Learning
Require: task distribution p(T), multi-task demonstrations {Di}, i = 1, · · · ,m, initial parameters
of high-level network θh and sub-skill policies θl1, · · · , θlK , inner and outer learning rate α, β.
while not done do

Sample batch of tasks Ti ∼ p(T)
for all Ti do

Sample {τi1}, {τi2}, {τi3}, {τi4} from {Di}
Evaluate∇θhLh(θh, τi1) according to 3 and τi1
Compute adapted parameters of high-level network: λh = θh − α∇θhLh(θh, τi1)
Evaluate∇θlkLBC(θlk,D2k) according to 4 and τi2, k = 1, · · · ,K
Compute adapted parameters of sub-skills: λlk = θlk−α∇θlkLBC(θlk,D2k), k = 1, · · · ,K
Evaluate∇θhLTi(λh, τi3) and ∇θlkLTi(λlk,D4k), k = 1, · · · ,K

end for
Update θh ← θh − β∇θh

∑
Ti∼p(T) LTi(λh, τi3)

Update θlk ← θlk − β∇θlk
∑
Ti∼p(T) LTi(λlk,D4k), k = 1, · · · ,K

end while

C Auxiliary Loss

We adopt an auxiliary loss for DMIL to better drive out meaningful sub-skills by punishing excessive
switching of sub-skills along the trajectory. This comes from an intuitive idea: each sub-skill should
be a temporal-extended macro-action, and the high-level policy only needs to switch to different
skills few times along a task, as the same idea of macro-action in MLSH [45]. We denote:

sign(x) =

{
1, if x = True
0, ifx = False

, (14)

and the auxiliary loss is:

Laux(τ) =

T−1∑
t=0

sign(ẑt+1 6= ẑt) / len(τ). (15)

Although this operation seems discrete, in practice we can use the operations in modern deep learning
framework such as PyTorch [51] to make it differentiable. We add this loss function to the Lh(θh, τi1)
and ∇θhL(λh, τi3) with a coefficient λ = 1. We also perform ablation studies of Laux and results
are in table 7.

D Proofs

D.1 Proof of Lemma 1

Lemma 1 In case q(φi;λi) is a Dirac-delta function and choosing Gaussian prior for p(φi|θ), equation
8 equals to the inner-update step of MAML, that is, maximizing log p(Dtri) w.r.t. λi by early-stopping
gradient-ascent with choosing µθ as initial point:

λi(Dtri ; θ) = µθ + α∇θ log p
(
Dtri |θ

)
|θ=µθ . (16)

Proof: in case of the conditions of Lemma 1, we have:

λi(Dtri ; θ) = arg max
λi

[log p(Dtri |µλi)− ‖µλi − µθ‖
2
/2Σ2

θ], (17)

13

As stated in [52], firstly in the case of linear models, early stopping of an iterative gradient descent
process of λ equals to the maximum posterior estimation (MAP) [53]. In our case the posterior
distribution refers to q(φi|λi), and MAML is a Bayes process to find the MAP estimate as the point
estimate of λi(Dtri ; θ). In the nonlinear case, this point estimate is not necessarily the global mode of
the posterior, and we can refer to [54] for another implicit posterior distribution over φi and making
the early stopping procedure of MAML acting as priors to get the similar result.

D.2 Proof of Equation 8

Equation 8 can be written as:

λi(Dtri , θ) = arg min
λi

KL(q(φi;λi)‖p(φi|Dtri , θ))

= arg max
λi

Eq(φi;λi)[log p(φi|Dtri , θ)− log q(φi;λi)]

= arg max
λi

Eq(φi;λi)[log p(Dtri |φi)]−KL(q(φi;λi)‖p(φi|θ)),

(18)

where in MAML we assume p(Dtri |φi) = p(Dtri |φi, θ), and use the joint distribution p(Dtri , φi|θ) to
replace p(φi|Dtri , θ) since we assume that p(Dtri) subjects to uniform distribution. Thus 8 can be
proved.

D.3 Proof of Theorem 1

Theorem 1 In case that Σθ → 0+, i.e., the uncertainty in the global latent variables θ is small, the
following equation holds:

∇θL(θ, λ1, · · · , λM) =

M∑
i=1

∇λi log p(Dvali |λi) ∗ ∇θλi(Dtri , θ). (19)

Proof:

∇θL(θ, λ1, · · · , λM) ≈
M∑
i=1

{∇θEq(φi;λi)[log p(Di, φi|θ)− log q(φi;λi)]}

=

M∑
i=1

∇θ[log p(Dvali |λi(Dtri , θ))− log p(λi(Dtri , θ)|θ)]

≈
M∑
i=1

∇θ log p(Dvali |λi(Dtri , θ))

=

M∑
i=1

∇λi log p(Dvali |λi) ∗ ∇θλi(Dtri , θ)

(20)

where the first approximate equal holds because the VI approximation error is small enough, and
the second approximate equal holds because that in case Σθ → 0+ and assuming λi be a neuron
network, log p(λi(Dtri , θ)|θ) ≈ 0 holds almost everywhere, so ∇θ log p(λi(Dtri , θ)|θ) ≈ 0. Note the
condition of theorem 1 is usually satisfied since we are using MAML, and the initial parameters θ are
assumed to be deterministic.

From another perspective, the right side of above equation is the widely used meta-gradient in MAML,
and it is equal to 1

m

∑m
i=1

(
I − α∇2

θLBC (θ,Dtri)
)
∗ ∇λiLBC

(
θ − α∇θLBC (θ,Dtri) ,Dvali

)
,

which is proved to be converged by [17].

D.4 Proof of Theorem 2

Theorem 2 In case of p(at|st, θlk) ∼ N (µθlk(st), σ
2), we have:

∇θh log p(Dtri |θh, θl1, · · · , θlK) = ∇θhLh(θh,Dtri), (21)

14

and

∇θlk log p(Dtri |θh, θl1, · · · , θlK) = ∇θlkLBC(θlk,D2k), k = 1, · · · ,K. (22)

Proof: since p(Dtri |θh, θl1, · · · , θlK) =
∏N
t=1 p(at|st, θh, θl1, · · · , θlK)p(st|θh, θl1, · · · , θlK) and

the second term is independent of θ, we consider the first conditional probability:

p(at|st, θh, θl1, · · · , θlK) =

K∑
k=1

p(zk|st, θh)p(at|st, θlk). (23)

In the HI step, p(at|st, θlk) is fixed, thus 23 becomes a convex optimization problem:

max
θh

K∑
k=1

p(zk|st, θh)p(at|st, θ (24)

The solution of this problem is λ∗h which satisfies p(zk|st, at, λ∗h) = 1, k = arg maxk p(at|st, θlk).
This means that πθh needs to predict the sub-skill category at time step t as k, in which case πθlk can
maximize p(at|st, θlk). In case we choose πθh to be a classifier that employs a Softmax layer at the
end, minimizing the cross entropy loss 3 equals to maximize 24, thus 21 can be proved.

In the LI step, p(zk|st, λh) is fixed, and the data sets for optimizing θl1, · · · , θlK are also fixed
as D2k = {(sijt, aijt)| ˆzi2t = k}Nkt=1. Thus we need to maximize each p(at|st, θlk) with D2k. In

case of p(at|st, θlk) ∼ N (µθlk(st), σ
2) ∝ exp[− (at−πθlk (st))

2

2σ2], we have maxθlk p(at|st, θlk) ⇔
minθlk(at − πθlk(st))

2, which leads to the loss function 4, thus 22 can be proved, which finishes the
prove of Theorem 2.

D.5 Proof of the E-step of DMIL

According to Theorem 1, we aim to maximize 17 w.r.t λi from the initial point θi with coordinate
gradient ascent. We here need to prove that in DMIL, we could also achieve the global maximum
point of λi as in MAML. We first give out the following Lemma:

Lemma 2 Let x be the solution found by coordinate gradient descent of f(x). Let xi, i = 1, · · · , n
be the n coordinate directions used in the optimization process. If f(x) can be decomposed as:

f(x) = g(x) +

n∑
i=1

hi(x), (25)

where g(x) is a differentiable convex function, and each hi(x) is a convex function of the coordinate
direction xi, then x is the global minimum of f(x).

Proof: Let y be another arbitrary point, we have:

f(y)− f(x) = g(y) + h(y)− (g(x) + h(x))

≥ ∇xg(x)T (y − x) +

n∑
i=1

hi(yi)− hi(xi)

=

n∑
i=1

(∇ig(x)(yi − xi) + hi(yi)− hi(xi))

≥ 0.

(26)

15

Now let’s consider our problem. Consider

log p(Dtri |θih, θil) = log

T∑
t=1

p(at|st, θih, θil)p(st)

= log

T∑
t=1

p(st)

K∑
k=1

p(zk|st, at, θih)p(at|st, θil)

≥
T∑
t=1

[log p(st) + log

K∑
k=1

p(zk|st, at, θih)p(at|st, θil)]

≥
T∑
t=1

[log p(st) +

K∑
k=1

log p(zk|st, at, θih)p(at|st, θil)]

=

T∑
t=1

[log p(st) +

K∑
k=1

log p(zk|st, at, θih) +

K∑
k=1

log p(at|st, θil)].

(27)

In our case, two coordinate directions are θih and θil. Let’s consider the terms inside the
brackets. According to Lemma 2, we can think log p(st) as g(x)(here it equals to constant),∑K
k=1 log p(zk|st, at, θih) as h1(x) and

∑K
k=1 log p(at|st, θil) as h2(x). Thus the optimum can

be proved.

E Additional Ablation Studies

E.1 Effects of the Bi-level Meta-learning Process

We use two variants of DMIL to see the effectiveness of bi-level meta-earning process. DMIL-High:
a variant that only meta-learns the high-level network, and DMIL-Low: a variant that only meta-
learns sub-skills. We use Option-GAIL as a comparison that does not meta-learn any level of the
hierarchical structure.

table 4 shows the results of this ablation study. DMIL-High achieves close results with OptionGAIL
in all meta-training suites and better results in all meta-testing suites, but worse than DMIL in all
cases. This shows that meta-learning the high-level network can help the hierarchical structure adapt
to new tasks, but only transferring the high-level network is not enough for accomplish all kinds of
new tasks. DMIL-Low achieves poor results in all suites except in ML10 meta-training suites. This
shows that transferring the high-level network is necessary when training on a large scale of tasks or
testing in new tasks.

Table 4: Success rates of DMIL-High, DMIL-Low, DMIL and OptionGAIL on Meta-world environ-
ments with K = 3. Each data point comes from the success rate of 20 tests.

ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
Methods 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

OptionGAIL 0.755±0.011 0.952±0.016 0.241±0.042 0.640±0.025 0.506±0.008 0.715±0.006 0.220±0.013 0.481±0.010

DMIL-High 0.634±0.001 0.914±0.011 0.298±0.012 0.670±0.015 0.495±0.007 0.735±0.006 0.280±0.016 0.551±0.011
DMIL-Low 0.746±0.011 0.943±0.006 0.291±0.024 0.666±0.021 0.511±0.005 0.765±0.009 0.266±0.010 0.492±0.014

DMIL 0.775±0.010 0.949±0.009 0.396±0.016 0.710±0.021 0.590±0.010 0.859±0.008 0.376±0.004 0.640±0.009

For better understand the effect of bi-level meta-learning process, we perform ablation study for
three DMIL variants in an manually-designed new task push-around-wall (fig. 8). In this task, the
robot needs to grasp a cube and circle it around the wall. This is a brand new skill that is not in
the meta-world suite. The accomplishment of this new task requires quickly adapting abilities of
both the high-level network and sub-skills. We sample two demonstrations and use the first one
as few-shot data, and illustrate the sub-skill categories of the second demonstration given by the
high-level network at fig. 4(b). Before adaptation, all variants give out approximately random results.
However, after one-shot adaptation, DMIL classifies almost every state into sub-skill 0 and sub-skill
2, which indicates these two sub-skills in DMIL have been adapted to the new task, and the high-level

16

MLSH OptionGAIL

Before

Adaptation

DMIL

After

Adaptation

(a) T-sne results of demonstrations and sub-skill categories of several
hierarchical models for meta-testing task hand-insert.

DMIL

DMIL-Low

DMIL-High

Before

Adaptation

After

Adaptation

Before

Adaptation

After

Adaptation

Before

Adaptation

After

Adaptation

(b) Sub-skill categories of task push-
around-wall for ablation study.

Figure 4: T-sne results and ablation studies about the bi-level meta-learning process.

network has also been adapted with the supervision from adapted sub-skills. Compared to DMIL,
DMIL-Low still can not give out reasonable results after adaptation, since its high-level network
lacks the ability to quickly transfer to new tasks. Instead, DMIL-High gives out plausible results
after adaptation. This shows the high-level network has adapted to the new task according to the
supervision from adapted sub-skills, but no sub-skill can dominate for a long time period since all
sub-skills lack the quickly adaptation ability.

E.2 T-sne Results of Different Methods

For comparison of different methods, we illustrate the t-sne results of states of each sub-skill in an
ML45 meta-testing task hand-insert in fig. 4(a). We use 3 demonstrations for adaptation, and draw
the t-sne results on another 16 demonstrations. This task is a meta-testing task, so no method has ever
been trained on this task before.

MLSH shows almost random clustering results no matter before and after adaptation, since its
high-level network is relearned in new tasks. OptionGAIL clusters to three sub-skills after adaptation.
Compared to them, DMIL clusters the data to only two sub-skills after adaptation. We believe fewer
categories reflect more meaningful sub-skills are developed in DMIL.

E.3 Effects of Sub-skill Number K in The Kitchen Environment

We perform ablation studies of sub-skill number K on the Kitchen environments and choose K =
2, 4, 8 respectively. table 5 shows the results. We can see that a smaller number of sub-skills can

17

achieve better results on such four unseen results that a large number of sub-skills. This may indicate
that the sub-skill number K can work as a ’bottleneck’ like the middle layer in an auto-encoder.

Table 5: Ablations of sub-skill number K in Kitchen environments.

Task (Unseen) K=2 K=4 K=8

Microwave, Kettle, Top Burner, Light Switch 1.9±0.43 1.5±0.48 1.7±0.22
Microwave, Bottom Burner, Light Switch, Slide Cabinet 2.15±0.19 2.35±0.39 2.0±0.37

Microwave, Kettle, Hinge Cabinet, Slide Cabinet 2.45±0.25 3.15±0.22 1.85±0.23
Microwave, Kettle, Hinge Cabinet, Slide Cabinet 2.01±0.24 2.95±0.44 2.44±0.47

E.4 Effects of Fine-tuning Steps

As all few-shot learning problems, the fine-tuning steps in new tasks to some extent determine the
performance of the trained model. It controls the balance between under-fitting and over-fitting. We
perform ablation studies of fine-tune steps in Meta-world benchmarks with K = 5 and lr=1e-2 in
table 6. Results are as follows:

Table 6: Ablation studies of the fine-tuning steps in Meat-world experiments with K = 5.

ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
fine-tune steps 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

10 0.5 0.575 0.28 0.24 0.374 0.49 0.05 0.17
30 0.69 0.915 0.25 0.31 0.602 0.85 0.13 0.32
50 0.695 0.895 0.27 0.39 0.583 0.87 0.12 0.32

100 0.665 0.905 0.23 0.41 0.614 0.872 0.07 0.43
300 0.66 0.845 0.28 0.44 0.605 0.876 0.12 0.44
500 0.63 0.91 0.25 0.39 0.584 0.867 0.13 0.42

Range 0.195 0.34 0.05 0.2 0.231 0.386 0.08 0.27

E.5 Effects of Continuity Regularization

We perform ablation studies of the effect of continuity regularization as following table 7. DMIL nc
means no continuity regularization. We can see that the continuity constraint would damage meta-
training performance slightly, but increase the meta-testing performance greatly.

Table 7: K = 10

ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
variants 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

DMIL 0.795 0.94 0.52 0.57 0.713 0.92 0.21 0.48
DMIL nc 0.788 0.96 0.32 0.56 0.703 0.927 0.17 0.35

Gap 0.007 -0.02 0.2 0.01 0.01 -0.007 0.04 0.13

E.6 Effects of Hard/Soft EM Choices

In DMIL, we use hard EM algorithm to train the high-level network. One may think about to use soft
cross entropy loss to train the high-level network to get better results. We perform this ablation study
in the following table 8. We can see that a soft cross entropy training won’t help increase the whole
success rates. This may comes from that, usually we use soft cross entropy (such as label smoothing)
to prevent over-fitting. However, in our situation, this may cause under-fitting, since training on such

18

Table 8: Ablation about hard/soft EM choices with K = 5 in the Meta-world environments.

ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
variants 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

DMIL 0.795 0.94 0.52 0.57 0.713333 0.92 0.21 0.48
DMIL soft 0.37 0.65 0.33 0.46 0.235556 0.43 0.1 0.32

Gap 0.425 0.29 0.19 0.11 0.477778 0.49 0.11 0.16

Table 9: DMIL hyper-parameters.

Parameter Value
α 5e-4
β 1e-4

fine-tune iterations 3
batch size (in trajectory) 16

λ 0.1

a large scale of diverse manipulation tasks is already very difficult. Future works can seek more
comparisons about this choice.

Additionally, we found an interesting phenomena that the training loss of the high-level network with
a softmax shows a trend of rising first and then falling, as shown in fig. 5. In our experiments, a
softmax loss may regularize the optimization process to make the high-level network be under-fitting
on training data. This may come from that, the experiment environment (Meta-world) contains a
large scale of manipulation tasks, in which the training of the high-level network can be difficult
and unstable. Thus a soft-max cross entropy loss cannot help that much here like how it works as a
regularizer to prevent over-fitting in the label smoothing [55].

Figure 5: The training loss of the high-level network with a softmax shows a trend of rising first and
then falling.

F Experiment Details

F.1 Environments

See fig. 7,fig. 6,fig. 9 and fig. 8.

F.2 Model Setup

DMIL: The high-level network and each sub-skill is modeled with a 4-layer fully-connected neuron
network, with 512 ReLU units in each layer. We use Adam as the meta-optimizer. DMIL-High and
DMIL-Low use the same architecture with DMIL. Hyper-parameter settings are available in table 9.

19

Figure 6: The ML45 environment.

Figure 7: The ML10 environment.

MIL: We use a transformer [50] as the policy to perform MAML. The input of the encoder is the
whole one-shot demonstration or 3-shot demonstrations with concatenated state and action. The
input of the decoder is current state. The output is the predicted action. Hyper-parameter settings are
available in table 10.

Table 10: MIL hyper-parameters.

Parameter Value
nhead 8
nlayer 3
dmodel 512
dk 64
dv 64

nposition 250
dropout 0.1

batch size (in state-action pair) 512

MLSH: We use the same settings of network with DMIL here. The macro step of high-level network
is 3. Since our problem is not a reinforcement learning process, we use the behavior cloning
variant of MLSH. The pseudo reward is defined by the negative mean square loss of the predicted
action and the ground truth, and we perform pseudo reinforcement learning process with off-policy
demonstration data. We use PPO as our reinforcement learning algorithm. Note in this way we ignore
the importance sampling weights that required by replacing the sampling process in the environments
with the demonstrations in the replay buffer, which has been shown to be effective in practice in
[56, 57]. Hyper-parameter settings are available in table 11.

20

Figure 8: Task push-around-wall.

Figure 9: Kitchen environments.

PEMIRL: We use the same setting of the high-level network as the policy πω and the inference
model qψ in PEMIRL. We use PPO as our reinforcement learning algorithm. We use a 3-layer
fully-connected neuron network as the context-dependent disentangled reward estimator rθ(s,m)
and the context-dependent potential function hφ(s,m). Here we also use the behavior cloning variant
of PEMIRL to only train models on the off-policy data. Hyper-parameter settings are available in
table 12.

F.3 Training Details

For fine-tuning, OptionGAIL, DMIL-Low and DMIL-High have no meta-learning mechanism for
(some parts of) the trained model. In the few-shot adaptation process, we have different fine-tune
method for these baselines:

OptionGAIL: We train OptionGAIL models on the provided few-shot demonstrations for a few
epochs.

DMIL-Low: We fix the high-level network and only fine-tune sub-skills with few-shot demonstra-
tions.

DMIL-High: We fix sub-skills and only fine-tune the high-level network with few-shot demonstra-
tions.

21

Table 11: MLSH hyper-parameters.

Parameter Value
high-level learning rate 1e-3
sub-skill learning rate 1e-4

PPO clip threshold 0.02
high-level warmup step 500

joint update step 1000
batch size (in state-action pair) 900

Table 12: PEMIRL hyper-parameters.

Parameter Value
learning rate of all models 1e-4

PPO clip threshold 0.02
coefficient (γ) of hφ 1

β 0.1
batch size (in trajectory) 16

22

	Code
	Algorithm
	Auxiliary Loss
	Proofs
	Proof of Lemma 1
	Proof of Equation 8
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of the E-step of DMIL

	Additional Ablation Studies
	Effects of the Bi-level Meta-learning Process
	T-sne Results of Different Methods
	Effects of Sub-skill Number K in The Kitchen Environment
	Effects of Fine-tuning Steps
	Effects of Continuity Regularization
	Effects of Hard/Soft EM Choices

	Experiment Details
	Environments
	Model Setup
	Training Details

