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1 Additional Details of the Case Study with a Recycling Robot
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Figure 1: Interaction Flow with System Architecture: In our interaction flow, a human selects
some items from a given category from a conveyor belt. The system estimates the similarity of
each remaining item on the conveyor belt. Finally, the robot selects objects most similar to the
human-selected objects and sends a push/pull command to the robot. Each colored zone (and its
corresponding number code) shows the system components deployed during different phases of the
interaction flow.
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Figure 2: Experimental Setup with Field of View of each camera highlighted

This section explains in detail components of our system architecture. Figure 2 shows our exper-
imental setup highlighting the field of view of our three cameras. Figure 1 depicts the interaction
flow of our experimental setup in conjunction with the components of our system.

1.1 Custom End-Effector Attachment Design for the Stretch RE-1 robot

The Stretch RE-1 robot [1] extracts items from
the conveyor belt by either extending its tele-
scopic arm to push objects off the conveyor belt
or pulling objects towards itself. The default
gripper of the robot was not appropriate for re-
moving recyclables from the conveyor belt be-
cause of the slow nature of the servo motors
used for engaging the grippers. Therefore, we
designed and built a custom static attachment
to the end of the telescoping arm of the Stretch
RE-1 robot (as shown in Figure 3) that allowed
the robot to push or pull items from the con-
veyor belt. Our custom end-effector attachment
consists of a base plate with a divider across the
middle of two concave halves to help guide tar-
gets to the pull or push action and is mounted
onto the threaded shaft for the removed grip-
per. It is supported by a cover that slides onto
the servo motor on the arm and also clips onto
the edge of the telescoping bar for stability. We
coat this attachment with sandpaper on all pos-
sible contact areas for enhanced grip.

Empirically, we found this attachment to be
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Figure 3: Design of our custom attachment for

highly effective at removing most kinds of ob-  pushing and pulling objects off the conveyor belt

jects. As shown in the supplementary video, the

attachment would gently guide the object to the

nearest edge if the target objects were primarily on either half of the belt. However, for highly de-
formed objects (like some heavily crushed cans or bottles) or objects with a lot of protrusions (like
trays), the objects could sometimes get stuck on the attachment’s divider. Occasionally, this caused
the robot to fail in removing an object even when it attempted to remove the desired object.

1.2 Detection of Picked Objects

This module determines which objects are picked by humans in real-time. This module has the
following two parts:

1. Pick Event Detection: The system uses the MediaPipe real-time hand tracking API [2] to
detect 21 2D landmarks on the user’s palm. These landmarks were superimposed on the
images. These images were then used to train a ResNet-18 [3] image classifier offline. The



(a) Scenario 1

(b) Scenario 2

Figure 4: Visualization of Different Scenarios for the Hit Planner: a) In Scenario 1, the removal
of object 1 would inadvertently remove object 5, which has a relatively low similarity score. The
hit planning algorithm would negate the score contribution of object 5 to object 1’s hit score as
explained in 2 and determine that object 4 by itself has the highest hit score, thereby initiating a
push action sequence. b) In Scenario 2, the removal of object 1 would likely remove object 2, which
has a relatively high similarity score and would only increase object 1’s hit score as explained in 1.
In this instance, the robot would target object 1 with a pull action sequence and target object 4 with
a pull action sequence once again after resetting the telescopic arm to a central position.

images are classified as either a picking event, not a picking event, or none if there is no
hand present in the image. To train this model, we collected videos of 13 people picking
items off the moving conveyor belt to capture the different techniques people use to pick up
different objects. We labeled each frame manually as either a pick event, not a pick event,
or no hand present in the frame. The trained model predicts a pick-event onset with 96%
accuracy on the leave-one-out cross-validation set.

2. Identification of Picked Objects: To detect which object was picked by the person,
we first ran inference on the belt images using the trained instance segmentation model
(YOLACT [4]) to identify each object’s position. We then used the predictions of the
trained pick onset detector described above to identify the precise time when the person
picks up an object. We use the 21 landmarks predicted on the person’s palm to draw a
tightly fitted rotated bounding box on their palm. Finally, we find an overlap between the
rotated bounding box over the person’s palm and each of the predicted object bounding
boxes in a few frames preceding the onset of Pick event to obtain an un-occluded image of
the object that was picked.



1.3 Hit Planner

We used our method to obtain similarity scores for all objects on the conveyor belt within the cam-
era’s frame situated between the robot and the human (Camera 2 in Figure 2). These similarity
scores were then passed to the object removal algorithm within the hit planner module to assign
each object an associated “hit score” using a multi-variable function. This score was maximized
across all objects in the frame, .S, and one item was selected for removal by the robot.

For each object, our object removal action policy first determines the action sequence that would be
most successful at removal given the object’s positioning relative to the plate mounted to the end of
the robot’s telescopic arm, as seen in Figure 3. The action space of the robot is comprised of either
a pushing, pulling or avoiding action sequence.

Given our removal actuation constraints, removing a target object may remove other unintended
objects, referred to as “casualties.” To account for the possibility of casualties, for every object, we
approximated a region of collision using the speed of the belt, vye;¢, and the robot’s arm exten-
sion/retraction speed, vq,,. The regions of collision for every corresponding action sequence were

Ubelt
objects whose bounding boxes overlap with this region have a removal probability proportional to
their percent overlap with the collision region.

two dimensional parallelograms extending from the push plate with inclination tan (m) All

Given a frame containing a set of objects .S, we perform optimizations that yield the object with
the highest push score, ¢y, and similarly the object with the highest pull score, ¢p,;. If there are
multiple objects in S it is possible for i,,sx and iy, to be distinct. Therefore

Iy = maX{ipusha 7:pull}

returns the single object 7, to be removed by the robot as well as the corresponding action sequence
request that should be sent to the robot’s onboard computer. For the push action sequence, we
optimized for

Ryush NR;
push = Max Lyy,ep(7) * | g sim; + Z C(j) * aysim; * g M (D)
i€S e it ’ ‘Rj|

Similarly for the pull action sequence, we optimized for

. ) ) ) . Rpu N R,
iput = max Loy (i) * |oasim; + Y C(j) * qwsimy * <|p“l;%j|) (2)
1€ JES i#j | J|

where a; and ay are tuning constants, sim; represents the similarity score for object ¢, and

W represents the percent overlap of object’s bounding box, R;, with the collision region

Rpuni. 1push and 1, are indicator functions for assessing whether a pull or push is necessary for
given object 7. If the position of an object ¢ is above the push plate of the robot relative to the belt,
Lpusn = 1 and 1,,;; = 0 and vice versa for when i is situated below the push plate. We include a
mapping function C' (%) that either subtracts or adds the score contribution of a casualty ¢ depending
on whether or not the similarity score is above some predefined threshold T, .

oo
Cli) = {1 if simy; > Tsim 3)

-1  ifsim; < Tgim

This is to ensure that we prioritize removal of objects that have a high probability of removing
objects that are similar to the human-selected objects.

2 Properties of the Dataset

It is challenging to develop a dataset that includes the enormous variety of recyclables that a real Ma-
terials Recovery Facility (MRF) processes. For our research, we toured such facilities and watched



numerous videos documenting the composition of streams at MRFs. Then, we worked to create
a collection of objects representing a characteristic sampling of recyclables typically seen in these
facilities. More specifically, we selected our set of over 500 unique objects that were diverse in
category, material, size, color, shape, deformability, reflectiveness, dirtiness, opacity, and density.
We deliberately excluded paper-based and glass-based recyclables because air pumps and optical
sorters typically remove these items reasonably well in a MRF. For our experiments, we captured
images of the selected objects under different lighting conditions, orientations, and levels of motion
blur on a moving conveyor belt, adding to the diversity of our dataset.

The dataset was collected using three Intel RealSense D4351 RGB-D cameras mounted over the
conveyor belt. We used our trained instance segmentation model to run inference on the overhead
camera stream at 1fps. The predicted instance segmentation masks were converted to rotated bound-
ing boxes, then cropped and saved offline. The dataset was manually curated to obtain 1502 images
of objects across the ten categories whose distribution is shown in Figure 6. Figure 5 shows some
sample images from each of our categories in the dataset.
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Figure 5: Sample Images from our Offline Dataset: Ten sample images from each of our ten
object categories.
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Figure 6: Data distribution in our offline dataset

3 Implementation Details for Our Method

To deal with memory and computational constraints, we resize each image to 128 x 128. We then
stochastically apply three augmentations in the following sequence: random cropping followed by
resizing to original size, random color distortions, and random gaussian blur. Finally, we train and
evaluate our approach end-to-end on a single NVIDIA GTX-3080ti GPU with the hyperparameters
shown in Table 1. We use the same set of hyperparameters for the ablation studies as we did not
notice any significant variation in the results with changes in the learning rate, projection dimension,
instance temperature, or cluster temperature. We also studied the importance of loss weighting of
the instance and the cluster losses (A;,s and M.y, ). Similar to Li et.al.[5], we obtained optimal
performance when the losses were weighted equally. We ran a hyperparameter search between 0.1
and 1 to determine the optimal weighting for the human-supervised loss (Apyman). We obtained the
best performance across all categories when Ap,ymqn Was 1.

Parameters Values

Learning Rate 0.01
Batch Size 64

Feature Extractor ResNet-18
Number of Epochs 100
Projection Dimension 128
Number of Clusters 10
Instance Temperature (7;,st) 0.5
Cluster Temperature (7;,,) 1.0
Instance Loss Weight (A;,5) 1.0
Cluster Loss Weight (A¢4,) 1.0
Human Supervised Loss Weight (Apuman) 1.0

Table 1: Hyperparameters for Training Our Method

4 Design Considerations of Our Method

We wanted to design a system that enables a human to teach a robot partner the kinds of objects that
they are sorting with a few examples and that could be demonstrated in the context of recycling in
Materials Recovery Facilities (MRFs). In such facilities, the human workers typically sort out one
type of recyclables while adapting to variations in task specifications and seasonal changes in the
stream composition. Because of how objects are handled in a MRF and the economic reality of the
recycling industry, one of our primary problem constraints was that the robot could quickly learn



K  Average F1 scores across all categories
2 0.820 £ 0.016
8 0.876 £ 0.02
9 0.882 + 0.02
10 0.886 + 0.017
11 0.883 £ 0.019
12 0.877 £0.02
15 0.867 £ 0.021
20 0.847 £ 0.018
50 0.828 £ 0.022

Table 2: Impact of the number of clusters (K) on overall model performance

from a limited number of examples of an object category provided by a human. The next paragraphs
explain each of our design considerations in detail:

1. Large object variety: In the recycling setting, the objects are not guaranteed to look con-
stant through time because of the way they are handled, their deformable properties, and
the frequent introduction of new objects. For a standard supervised learning method to per-
form well at classifying these objects, it would require training models with large datasets to
keep up with the performance requirements. Therefore, we chose to approach this problem
from a self-supervised contrastive learning perspective, which could adapt to the changing
stream composition by constantly re-training in a more active learning fashion with just a
few new human labels.

We explored various state-of-the-art contrastive learning techniques for our work and found
that these techniques typically pass two stochastically augmented views of the same image
through an image classification network and a multi-layer perceptron (MLP) to bring them
close to each other in the embedding space. These methods have been shown to learn very
strong representations for initializing large neural networks that perform a wide variety
of downstream supervised learning tasks like image classification, semantic segmentation,
and object detection [6]. However, since we wanted to learn a representation of objects such
that similar objects were grouped in the embedding space, we needed to take into account
inter-instance similarity. We found contrastive clustering [5] to be the best self-supervised
method for learning object representations.

2. Humans are unable to select all examples of a given category: In a real-world recycling
setting, where the conveyor belts are typically very crowded, the human sorters cannot pick
out all the objects that belong to a given category. So, there could be objects left on the con-
veyor belt that belong to the category of interest. This means that the robot would have to
gain an understanding of the properties of the objects of interest to their human partner with
a limited number of positive examples but no negative examples. Therefore, we designed
the proposed human-supervised loss to force the features of the human-selected examples
to be close to each other in the embedding space. When the human-supervised loss is jointly
trained with the contrastive clustering objective function, the human-supervised loss guides
the formation of clusters in the embedding space to be better aligned with human choices.

3. Real time training considerations: Theoretically, any image classification network could
have been used as a backbone for the contrastive learner. However, since we intended to
use this model in real-time, we opted for ResNet-18 [3], which is lightweight and has been
shown in the literature to be powerful enough to learn good visual representations [7, 8].

5 Additional Results

5.1 Offline Evaluation Results

5.1.1 Impact of the Number of Clusters (K) in the Cluster Projection Head

We base our work on a self-supervised clustering algorithm, Contrastive Clustering [5]. Thus, we
are required to provide the number of clusters K as a hyperparameter of the model. In the results



(b) Our Approach

Figure 7: Comparison of t-SNE Visualization of the learned representations on the offline
dataset: a) t-SNE plot for the self-supervised contrastive clustering [5], b) t-SNE plot for our
approach. Images with yellow border denote the objects selected by the human. In our approach,
clusters for each category show better separation than the contrastive clustering approach, and clus-
ters are overlapping when an increasing number of features are common.



presented in the paper, we defined the number of clusters K to be the number of categories C to keep
our evaluation consistent with the original Contrastive Clustering paper [5]. However, our method
does not need to know precisely how many pre-defined object categories are being observed; instead,
a ballpark amount suffices. To demonstrate this idea, we conducted an experiment showing that the
number of clusters (K) need not be precisely equal to the number of categories (C). As indicated in
the table 2, if the number of clusters is significantly lower or higher than the number of categories
in the downstream task, there is a significant decrease in performance. Otherwise, the performance
of our approach is robust to the value of K.

Experiment 1 2 3 4 5 6 7
Crushed Bottles 0.12 0.65 0.50 0.56 0.59 0.70 0.82
+0.00 £0.02 =£0.06 =£0.01 =£0.03 =£0.03 =£0.02

Intact Bottles 0.21 0.58 0.51 0.64 0.67 0.68 0.80
+0.00 +£0.03 +0.02 +£0.01 +0.01 =£0.02 =+0.03
One Gallon 0.14 0.76 0.64 0.73 0.68 0.81 0.84
+0.00 #£0.01 +0.03 £0.01 +0.01 #£0.01 =0.02
Half Gallon 0.19 0.72 0.69 0.68 0.69 0.79 0.86
+0.00 £0.02 +0.01 #£0.01 +0.01 =£0.02 =+0.02
Crushed Cans 0.35 0.73 0.65 0.78 0.73 0.82 0.84
+0.00 =£0.04 +0.01 #£0.03 +0.03 =£0.01 =+0.02
Intact Cans 0.40 0.81 0.73 0.82 0.81 0.85 0.86

+0.00 =£0.00 =+0.02 #£0.01 =+0.01 =£0.02 =+0.02
Brown Cardboard 0.13 0.74 0.71 0.75 0.84 0.89 0.94
+0.00 =£0.02 =+0.01 =£0.02 =+0.02 =£0.02 =+0.01
Coated Cardboard  0.05 0.87 0.37 0.52 0.80 0.91 0.98
+0.00 =£0.05 =+0.03 =£0.02 =+0.01 =£0.04 =+0.02
Colored Bottles 0.08 0.91 0.71 0.77 0.64 0.93 0.93
+0.00 £0.01 +0.01 =£0.00 =+0.00 =£0.02 =+0.00
Trays 0.06 0.68 0.56 0.55 0.66 0.98 1.00
+0.00 =£0.01 =+0.01 #£0.01 =+0.01 =£0.01 =+0.00

! Human Supervision Only

2 Instance Loss Only (SimCLR)

3 Cluster Loss Only

4 Instance Loss + Human Supervision

3 Cluster Loss + Human Supervision

6 Contrastive Clustering (Instance Loss + Cluster Loss)

7 Human Supervised Contrastive Clustering (Our Method)

Table 3: Results of our Offline Evaluation (Accessible Version): Comparison of F1
Scores with Baselines and Ablation Study aggregated over 3 human-selected pools per
category.

5.1.2 Qualitative Results

Figure 7 shows plots of 10 clusters obtained by projecting the embedding vectors for the points
(128-dimensions) onto 2-dimensions using t-SNE for contrastive clustering (Figure 7a) and for our
approach (Figure 7b). In Figure 7b, the images with a yellow border show the human-selected
objects. This shows that the clusters formed as a result of our approach are more homogeneous
and show good separation across classes, overlapping only when an increasing number of features
are common. For example, in contrastive clustering (Figure 7a), many crushed cans lie in the same
cluster as un-crushed cans if they are of the same color or with crushed bottles. However, in our
approach, most crushed cans get pulled into the same cluster when the human provides examples of
crushed cans.

5.2 Real Robot Evaluation

Figure 9 shows some qualitative examples of similarity scores for every object on the conveyor belt
when the human trained our approach in real-time with 30 examples of different types of objects.
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c) Impact of Human Supervision
on Constrastive Clustering

1: Crushed Bottles 3: Half Gallon Milk Jugs

2: Crushed Cans

Figure 8: Impact of augmenting human supervision to contrastive learning (Accessible Ver-
sion): Difference in performance between self-supervised learning augmented with human supervi-
sion and the self-supervised learning model trained independently for instance loss, cluster loss, and
contrastive clustering, respectively across categories. Specifically, w.r.t. the experiment numbers in
Figure 3 in the main paper, a) represents Experiment 4 - Experiment 2, b) represents Experiment 5
- Experiment 3, c¢) represents Experiment 7 - Experiment 6. (Best viewed on a PDF processor with

Zoom)

4: Brown Cardboard

5: Un-crushed Cans
6: Coated Cardboard

10

7: Colored Bottles
8: One Gallon Milk Jugs

9: Un-crushed Bottles
10: Cardboard Trays




Figure 9: Sample Qualitative Results from our Robot System: Similarity scores of objects on the
conveyor belt obtained from our method, when the human trained the system with 30 objects of type
a) half-gallon milk jugs b) un-crushed cans
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Figure 10: Accuracy of Our Method in Real Time

These results show that the similarity scores are closer to 1 for the objects belonging to the category
of interest, and the similarity scores are lower for those not belonging to the category of interest.

Table 4 shows the average number of True Positives, False Positives, False Negatives, and True
Negatives across all categories as our approach was trained with 10, 20, and 30 human-selected ex-
amples. These results show that the average number of True Positives and True Negatives increases
with more human-provided examples. In contrast, the average number of False Positives and False
Negatives decreases as the number of human-provided examples increases.

The main paper demonstrates the performance of the real robot by showing the F1-scores of the
robot system as the researcher picks 30 items in increment of 10. Figure 10 shows the accuracy of
the robot system when evaluated in a similar fashion. The robot’s accuracy improved by 3 points on
average across categories for every ten human-provided examples.

6 Discussion

6.1 Additional Intuitive Explanation of Our Method

It is important to note that inductive bias is key for a machine learning model to learn from just a few
samples. In our paper, this bias is provided through the cluster loss, which partitions the embedding
space into a pre-specified number of clusters that we hope represent object categories — though our
approach does not enforce this. Adding the human-supervised loss to the representation learning
process helps guide the formation of the clusters according to the human’s requirements. Worth

11



Number of Training Items 10 20 30

True Positives 13.44+4.94 15.2+4.31 16.8 +£4.73

False Positives 4.7+ 1.88 3.5+ 1.71 2.3+1.33

False Negatives 5.8+2.93 4.9+2.23 4.2+£2.20
True Negatives 60.6 + 16.61 69 £+ 13.07 69.4 + 14.30
Precision 0.739 £0.07 0.814+0.074 0.885 % 0.058
Recall 0.706 £0.10 0.761 +0.074  0.806 £ 0.08
F1-score 0.715£0.06 0.782£0.04 0.838£0.03
Accuracy 0.87+0.04 0.908£0.02  0.929 £0.02

Table 4: Performance Statistics of our Method on the Real Robot System

noting, that knowing the exact number of object categories that the robot needs to handle in practice
is not a requirement of our approach.

6.2 Assumption about the Human Selecting One Category of Objects

The assumption that a human would manipulate objects from a single object category holds across
many real-world Materials Recovery Facilities (MRF), which our setup models. When we started
this project, we visited a recycling facility to understand how each category of recyclables is sorted
sequentially using a combination of automated sorters and humans. At every stage in the sorting
process, a particular category of recyclable was extracted from the stream using an automatic sorter.
The items of a given category missed by the automatic sorter were sorted by human sorters who
tried manually extracting the remaining objects on a fast-moving and crowded conveyor belt. The
human sorters are trained to extract only one category of interest at a given time because some
objects in the recycling stream are more valuable than others. For example, after an automatic sorter
has extracted most of the paper from the stream, the human sorters would be tasked with extracting
all the remaining paper-based products. This would make the stream more uniform for subsequent
automatic sorters to remove a certain kind of plastic. In practice, though, the human sorters may not
be able to extract all the objects of the desired category, which could lead to quality issues in the
target end-product. Therefore, if a robot were to assist a human sorter in sorting through a particular
kind of object, the robot would have to learn the properties of the objects that its human collaborator
is interested in. Our work proposes a solution to this problem whereby the robot observes the human
picking up a limited number of objects from a single category and quickly learns to distinguish these
types of objects.
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