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7 Appendix

In this supplementary material, we cover certain aspects of our implementation in more detail. We
present plots visualising the first descriptors extracted for various object categories. We describe the
extension of our method to fitting 9-D transforms (rather than the 7-D similarity transform) between
object instances. Finally, we give details of our experiments on a Panda robot arm with a RealSense
camera, which demonstrated that the method could run at 15fps while providing pose estimates for
previously unseen objects.

7.1 Implementation details

7.1.1 Descriptor dimensionality reduction

In Section 3.3, we describe our approach to using principal components analysis (PCA) to reduce
descriptor dimensionality. In Section 4.1.1, we show that empirically, such dimensionality reduction
actually improves performance up to a point (an over 10-fold decrease in dimensionality from 384-D
raw ViT features to 32-D descriptors improves performance considerably for pose estimation over
the CO3D dataset). In this appendix, we provide illustrative examples of the descriptors resulting
from PCA. Fig. A.1 shows the first three principal components for several frames from each of 20
CO3D categories. The components onto which these frames’ descriptors have been projected have
been, in each case, calculated on a distinct reference sequence from the same category. Descriptor
plots are masked by a threshold on ViT saliency for clarity. Fig. A.2 also shows the projection of
sequence descriptors onto the first three principal components, but shows the result of using principal
components calculated on descriptors from a single reference sequence (the left-most sequence for
each category) on five other distinct sequences drawn from the same category. The cross-instance
generalisation of the DINO ViT features, and of descriptors derived from these, can be seen in the
consistent colouring (in the space of the first three principal components) of key object parts across
diverse instances.

7.1.2 Fast depth completion

In both our static datasets (Section 4.1) and robot manipulator settings Section 4.3, depth images
are incomplete. For fast and scene-agnostic depth completion, we take inspiration from [38], which
proposes a simple sequence of kernel-based filters for fast depth completion. We use a similar
sequence of kernels to process our depth images. Of particular importance is that there are no holes
in the depth image, as these can cause numerical instabilities when back-projected points are used
to estimate rigid-body transforms in our method. As a final stage, we fill any remaining holes with
a dilation operation with a very large kernel size, and set any remaining empty values to the mean
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Figure A.1: Examples from the CO3D dataset, showing the first three principal components for target se-
quences from each of 20 considered categories. For each example, the principal components have been calcu-
lated on a different reference sequence. PCA feature maps are masked by a threshold on saliency computed
from the ViT attention maps.

depth over the image. Depth processing takes 4.1ms. An example result on a sequence from the
RealSense camera can be seen in Fig. A.4.

7.1.3 TEASER++ baseline

For the TEASER++ [13] baseline experiments reported in Section 4, we use the official implementa-
tion from https://github.com/MIT-SPARK/TEASER-plusplus with all parameters at defaults.
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Figure A.2: Visualising the first three principal components calculated from the features of a single reference
sequence (leftmost images for each category) on five further sequences from the same category. Consistent
colouring of corresponding parts can be seen. This property of invariance to varying instances within a category
is exploited by our method for robust cross-instance correspondence estimation, used in our pose estimation
method.
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7.2 Additional experiments

7.2.1 3D cyclical distance for correspondence matching

In Section 3.2, we describe the cyclical distance metric for selecting strong correspondences from
descriptor similarity matrices, which is introduced in [17]. This cyclical distance metric for select-
ing correspondences can be thought of as a spatial prior: correspondences that form a cycle from
reference to target back to reference image patch (by nearest neighbours) which arrives at a close
location in patch-space to the original location are more likely to be meaningful, because a close
patch location could very likely contain the same part of an object as the original patch. Patch dis-
tances, though, are a 2D measure, while in this work we have access to depth maps. We experiment
with a 3D version of the cyclical distance measure in which correspondences are ranked based on
the distance in actual 3D space between the original patch and the final patch. We found a small
improvement from this (+0.6% on Acc30 across CO3D in a 10 reference, 10 target image setting),
but we do not believe this result to be statistically significant.

7.2.2 Replacing 7D similarity transform with 9D affine transform

As noted in Section 5, the use of a 7D similarity transform (1D isotropic scale, and 6D pose) to model
the relationship between correspondences found between two object instances from a category is
almost certainly over-prescriptive. In this section, we how a 9D affine transform can be used instead
with very few changes to the method. This is a more general model, and has promise to be more
suitable for certain categories. In 9D setting, rather than a single isotropic scaling parameter �, we
seek a vector s 2 R3 which models separate scalings for each dimension.

Otherwise following Section 3.4.2, we seek a rotation R̂, translation t̂ and scaling ŝ that, for K
corresponding 3D points {uk,vk}k=1:K satisfy the following:

(s, R̂, t̂) = argmin

(s,R,t)

KX

k=1

vk � (diag(s)Ruk + t) (3)

In the 7D case (� scaling rather than s), Umeyama’s method gives a fast and closed form solution
that scales well with the number of points as it is based on the singular value decomposition of the
covariance matrix of the two correspondence matrices [34].

A similar method has been proposed in [39] to calculate the 9D transform described above. We refer
the reader to that paper for further details. We implemented this method to evaluate whether finding
a 9D transform might lead to better pose estimates by allowing for a more accurate category-level
model of spatial correspondence. As with Umeyama’s method, the most time-consuming compo-
nent of this algorithm is computing the singular value decomposition of the covariance matrix, and
we are still able to run 1,000 RANSAC trials in a few milliseconds with this method and CUDA
acceleration.

While we did not find this method to improve pose estimation performance on aggregate over the
categories used in this work (a -0.5% drop in Acc30 across CO3D in a 10 reference, 10 target image
setting), this may be because the categories considered tend to have objects whose shape relationship
is captured acceptable by a single scaling factor.

Finally, while this work’s evaluation is on pose estimation, the underlying methodology and finding
of robust category-level correspondences could be applied to the challenging setting of category-
level grasping. In this context, there is good evidence that the ability to infer non-uniform scaling
is important for transferring grasps between items within a category. Recent works have motivated
the use of the 9D transform described here in representing a category-level canonical space for
objects [40, 41], extending Normalised Object Canonical Space (NOCS) [6] to Non-Uniform NOCS
(NUNOCS).
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7.2.3 RANSAC inlier threshold

We use RANSAC to find an optimal transform as described in Section 3.4.2. For the results in
Table 1, we used an inlier threshold of 0.2 for all categories, in order to match the conditions in
[17]. All objects in the dataset are at the same scale, measuring about 6 units long on their longest
side. This threshold is thus intuitively quite restrictive: a point on the reference object under the
estimated transform must not be more than about 3.5% of the object’s overall size away from the
corresponding point on the target object, or else it will not be counted as an inlier. We experimented
with various inlier thresholds, and found that setting this parameter to be higher, based on the above
intuition, has a positive effect. The results in Table 2, for instance, use a threshold of 0.5 (c.f. 72.1%
Acc@30�for the 30-vs-30 image results, vs 69.8% Acc@30�in Table 1).

7.3 Further results

7.3.1 Translation estimation performance

Table A.1 reports results for estimating the translation component of 6D pose.

All Categories Per Category (Acc@0.5), %

Method Med. Err (#) Acc@1.0 (") Acc@0.5 Acc@0.2 B’pack Car Chair Keyboard Laptop M’cycle

Ours-U 0.586 76.1 46.9 19.9 25 97 27 80 96 85
Ours-UC 0.548 78.3 49.4 19.1 37 84 36 81 99 84

Ours-UCD 0.498 81.6 52.6 20.7 39 91 35 86 99 85
Ours-UCD+ 0.489 81.8 53.9 22.3 36 90 40 82 100 90

Table A.1: Pose estimation accuracy (translation). We report Acc@�, with � 2 {1.0, 0.5, 0.2}, giving the
percentage of estimates that fall within a certain maximum threshold on Euclidean distance from ground truth,
and the median error ‘Med. Err’ (per category, then averaged). These numbers are absolute, as every category
in the CO3D dataset is at the same scale, with the longest side scaled to 2⇡. Thus, a translation error of
1.0 is approximately 1/6 the longest side of the object. Suffixes on our method ablations: C: consensus by
largest inlier group U: Umeyama’s method; rigid body solution using best-view correspondences. D: descriptor
dimensionality reduction (to 32 components). Methods use 10 reference and target views. + indicates 30 views
used.

7.3.2 Visual examples of inlier correspondences following RANSAC

Fig. A.3 visualises a key part of the pose estimation process - the inlier set following RANSAC - on
an example reference-target object pair from each of the 20 CO3D categories considered.

7.4 Robot experiments

In Section 4.3, we describe the setting for deploying our pose estimation method on a Panda robot
arm with a wrist-mounted RealSense camera. In this appendix, we expand on several fully auto-
mated pre-processing steps that are important implementation details for this real-world setting. For
videos of real-time one-shot pose estimation, we refer the reader’s attention to the accompanying
video.

7.4.1 Attention maps for object detection

In our experiments on the CO3D dataset, object detection is an upstream process, and we operate
on images closely cropped to the objects of interest. We show that we are able to achieve the same
accurate object detection and cropping in a fully autonomous setting (running pose estimation on a
robot arm at 15Hz) through running ViT inference on each image twice. This process is shown in
Fig. A.4.

In the first pass, the whole field-of-view image from the wrist-mounted RealSense camera is pro-
cessed. A threshold (0.05) on the attention map from the first pass is used to produce a binary
segmentation mask, from which the largest connected component is taken to be the object of inter-
est. The resulting bounding box is up-sampled to the original image size, and expanded by 10% so
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Figure A.3: An example reference-target object pair from each of 20 CO3D categories used for pose estimation.
Point clouds are created from the images and depth maps as described in Section 7.4.2. Point clouds are
rendered with respect to the camera viewpoint of the first frame in their respective sequences, with an added
fix offset to avoid overlap. Lines between the objects show the inlier set of correspondences following the
RANSAC rigid body solution (Section 3.4.2). As in Fig. 2, line colour shows correspondence similarity (

=higher, =lower). Categories, from left to right, top to bottom: hydrant, handbag, keyboard, hairdryer,
laptop, motorbike, mouse, toaster, teddybear, backpack, toy train, toy bust, book, toilet, bicycle, toy plane,
remote, chair, car, toy truck.

as to be sure to capture the whole object. This box is used to produce a closely cropped image whose
ViT features are used for correspondences and pose estimation.

7.4.2 Bounding boxes for visualising pose estimates

Although we describe our method as being one-shot pose estimation because of its use of a reference
sequence to describe a target object category, we design our system to require no manual labelling or
manual processing of this reference object, such that the whole method could in practice be deployed
as fully autonomous.

Our method estimates a 7 DoF rigid body transforming (�̂, R̂, t̂) between a category’s reference
object, and a target object, as described in Section 3.4.2, where 6D pose is given by SO(3) rotation
R̂ and translation t̂. While this captures object pose from a mathematical point of view, it does not
immediately offer a way of visualising the pose estimates. To facilitate this in a fully automated
pipeline, we fit an oriented bounding box to the reference object for a category, and transform this
by the estimated 7 DoF rigid body transform to visualise pose estimates for the target objects.

The process of fitting an oriented bounding box to a captured reference object is shown in Fig. A.4.
The first stages of close cropping are described in Section 7.4.1. Subsequently, masking and point
cloud outlier removal steps produce a filtered point cloud, to which an oriented bounding box is
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(d) Cropped images (e) Raw depth (f) Fast depth completion

(g) Full point cloud (h) Cropped point cloud (i) Filter above plane (j) Outlier removal & 
oriented bounding box

(a) Original images (b) Original saliency maps (c) Threshold, largest 
component

Figure A.4: Point cloud processing for fitting oriented bounding boxes to reference objects. (a) Original im-
ages from RealSense camera, 720x1280 resolution centre-cropped to 720x900 then resized to 224x224 for ViT
processing. (b) Saliency aggregated from the ViT attention maps. (c) A threshold of > 0.05 on saliency pro-
duces a binary foreground mask - here, the largest connected component is shown in yellow (other ‘foreground’
in blue). (d) Images cropped to the box described by the largest connected component. (e) Raw depth from
the RealSense D435i, following same crop. (f) Depth maps following fast inpainting process. (g) Point cloud
from backprojecting original images. (h) Point cloud using saliency-based cropping. (i) Point cloud following
plane detection. (j) Final point cloud following outlier removal with a KNN criteria, and oriented bounding
box fitting.

fitted based on the PCA of the convex hull of the filtered point cloud. This is a fast approximation to
the minimum-volume bounding box, which tends to produce intuitive, easily interpreted bounding
boxes around object volumes [42]. We use Python bindings to the Open3D library to perform this
final stage [43].

For outlier removal, we use a fast K-nearest neighbours based approach using Pytorch3D [44]. For
an inlier point, we require that its 10 nearest neighbours be within 5⇥ 10

�5
m.

15



References
[1] K. Wada, S. James, and A. J. Davison. ReorientBot: Learning Object Reorientation for

Specific-Posed Placement. In ICRA, 2022.

[2] E. Sucar, K. Wada, and A. Davison. NodeSLAM: Neural Object Descriptors for Multi-View
Shape Reconstruction. Proceedings - 2020 International Conference on 3D Vision, 3DV 2020,
pages 949–958, 2020.

[3] W.-C. Ma, A. J. Yang, S. Wang, R. Urtasun, and A. Torralba. Virtual Correspondence: Humans
as a Cue for Extreme-View Geometry. In CVPR, 2022.

[4] C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and S. Savarese. DenseFusion:
6D object pose estimation by iterative dense fusion. In CVPR, 2019.

[5] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. PVN3D: A deep point-wise 3D keypoints
voting network for 6DoF pose estimation. In CVPR, 2020.

[6] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. Guibas. Normalized Object Co-
ordinate Space for Category-Level 6D Object Pose and Size Estimation. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June,
2019.

[7] C. Wang, R. Martin-Martin, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese, and Y. Zhu. 6-PACK:
Category-level 6D Pose Tracker with Anchor-Based Keypoints. In ICRA, 2020.

[8] Y. Lin, J. Tremblay, S. Tyree, P. A. Vela, and S. Birchfield. Single-stage Keypoint-based
Category-level Object Pose Estimation from an RGB Image. 2021. URL http://arxiv.
org/abs/2109.06161.

[9] P. R. Florence, L. Manuelli, and R. Tedrake. Dense Object Nets: Learning Dense Visual Object
Descriptors By and For Robotic Manipulation. In Conference on Robotic Learning, 2018.

[10] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kPAM: KeyPoint Affordances for Category-
Level Robotic Manipulation. 2019.

[11] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation.
2021.

[12] A. Ahmadyan, L. Zhang, A. Ablavatski, J. Wei, and M. Grundmann. Objectron: A Large
Scale Dataset of Object-Centric Videos in theWild with Pose Annotations. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2021.

[13] H. Yang, J. Shi, and L. Carlone. Teaser: Fast and certifiable point cloud registration. IEEE
Transactions on Robotics, 37, 2021.

[14] B. Wen and K. Bekris. BundleTrack: 6D Pose Tracking for Novel Objects without Instance
or Category-Level 3D Models. In IEEE International Conference on Intelligent Robots and
Systems, 2021.

[15] I. Shugurov, F. Li, B. Busam, and S. Ilic. OSOP: A Multi-Stage One Shot Object Pose Estima-
tion Framework. arXiv preprint, 2022.

[16] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
Properties in Self-Supervised Vision Transformers. In ICCV, apr 2021.

[17] W. Goodwin, S. Vaze, I. Havoutis, and I. Posner. Zero-Shot Category-Level Object Pose
Estimation. arXiv preprint, 2022.

16

http://arxiv.org/abs/2109.06161
http://arxiv.org/abs/2109.06161


[18] X. Chen, Z. Dong, J. Song, A. Geiger, and O. Hilliges. Category Level Object Pose Estimation
via Neural Analysis-by-Synthesis. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12371
LNCS. Springer Science and Business Media Deutschland GmbH, 2020.

[19] K. Chen and Q. Dou. SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object
Pose Estimation. In ICCV, 2021.

[20] A. Wang, A. Kortylewski, and A. Yuille. NeMo: Neural Mesh Models of Contrastive Features
for Robust 3D Pose Estimation. In ICLR, 2021.

[21] M. Tian, M. H. Ang, and G. H. Lee. Shape Prior Deformation for Categorical 6D Object Pose
and Size Estimation. In ECCV, 2020.

[22] D. Chen, J. Li, Z. Wang, and K. Xu. Learning canonical shape space for category-level 6D
object pose and size estimation. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society, 2020.

[23] J. Shi, H. Yang, and L. Carlone. Optimal Pose and Shape Estimation for Category-level 3D
Object Perception. In Robotics: Science and Systems XVII, 2021.

[24] Y. Xiao, X. Qiu, P. A. Langlois, M. Aubry, and R. Marlet. Pose from Shape: Deep pose
estimation for arbitrary 3D objects. In 30th British Machine Vision Conference 2019, BMVC
2019, 2019.

[25] C. Sahin and T. K. Kim. Category-level 6D object pose recovery in depth images. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2019.

[26] A. Grabner, P. M. Roth, and V. Lepetit. 3D Pose Estimation and 3D Model Retrieval for
Objects in the Wild. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2018.

[27] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. Inferring 3D Object Pose in RGB-D Images.
2015.

[28] Y. Xiao, Y. Du, and R. Marlet. PoseContrast: Class-Agnostic Object Viewpoint Estimation
in the Wild with Pose-Aware Contrastive Learning. In 2021 International Conference on 3D
Vision (3DV). IEEE, 2021.

[29] W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis. FS-Net: Fast Shape-based
Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2021.

[30] J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou. OnePose: One-Shot
Object Pose Estimation without CAD Models. arXiv preprint, 2022.

[31] S. Lu, R. Wang, Y. Miao, C. Mitash, and K. Bekris. Online Object Model Reconstruction and
Reuse for Lifelong Improvement of Robot Manipulation. In ICRA, 2022.

[32] Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen. FS6D: Few-Shot 6D Pose Estimation of Novel
Objects. In CVPR, 2022.

[33] K. Aberman, J. Liao, M. Shi, D. Lischinski, B. Chen, and D. Cohen-Or. Neural best-buddies:
Sparse cross-domain correspondence. ACM Transactions on Graphics, 2018.

[34] S. Umeyama. Least-Squares Estimation of Transformation Parameters Between Two Point
Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991.

17



[35] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Convolutional Neural Network
for 6D Object Pose Estimation in Cluttered Scenes. In Robotics: Science and Systems XIV,
2018.

[36] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny. Common
Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction.
In ICCV, 2021.

[37] J. L. Schonberger and J.-M. Frahm. Structure-from-Motion Revisited. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016.

[38] J. Ku, A. Harakeh, and S. L. Waslander. In defense of classical image processing: Fast depth
completion on the CPU. In Proceedings - 2018 15th Conference on Computer and Robot
Vision, CRV 2018, 2018.

[39] J. L. Awange, K. H. Bae, and S. J. Claessens. Procrustean solution of the 9-parameter trans-
formation problem. Earth, Planets and Space, 2008.

[40] B. Wen, W. Lian, K. Bekris, and S. Schaal. CaTGrasp: Learning Category-Level Task-Relevant
Grasping in Clutter from Simulation. In ICRA, 2022.

[41] B. Wen, W. Lian, K. Bekris, and S. Schaal. You Only Demonstrate Once: Category-Level
Manipulation from Single Visual Demonstration. In RSS, 2022.

[42] Y. Wu, O. P. Jones, and I. Posner. Obpose: Leveraging canonical pose for object-centric scene
inference in 3d, 2022.

[43] Q.-Y. Zhou, J. Park, and V. Koltun. Open3d: A modern library for 3d data processing, 2018.
URL http://arxiv.org/abs/1801.09847.

[44] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W. Lo, J. Johnson, and G. Gkioxari. Ac-
celerating 3d deep learning with pytorch3d. CoRR, abs/2007.08501, 2020. URL https:
//arxiv.org/abs/2007.08501.

18

http://arxiv.org/abs/1801.09847
https://arxiv.org/abs/2007.08501
https://arxiv.org/abs/2007.08501

	Introduction
	Related Work
	Category-level object pose estimation
	Template-based object pose estimation
	Category-level object representations for manipulation

	Methods
	One-shot pose estimation setting
	Descriptors and correspondences
	Dimensionality reduction
	Viewpoint estimation
	Aggregating multi-view correspondences
	Final pose estimation

	Continual category learning

	Experimental Results
	Multi-view one-shot pose estimation
	Effect of descriptor dimensionality reduction

	Novel category discovery
	Robotic novel object pose rearrangement

	Limitations
	Conclusion
	Appendix
	Implementation details
	Descriptor dimensionality reduction
	Fast depth completion
	TEASER++ baseline

	Additional experiments
	3D cyclical distance for correspondence matching
	Replacing 7D similarity transform with 9D affine transform
	RANSAC inlier threshold

	Further results
	Translation estimation performance
	Visual examples of inlier correspondences following RANSAC

	Robot experiments
	Attention maps for object detection
	Bounding boxes for visualising pose estimates



