A  Overview

In the following, we provide additional technical details and supporting results. The sections are
organized as follows:

 Sec. B reviews how training with geometric correspondences is conducted.
* Sec. C provides further details for training models.

* Sec. D offers an overview and example images of our datasets.

» Sec. F.1 discusses further results from the augmentation ablation study,

* Sec. G details grasp preference heatmap generation and the objects used in the grasping
experiment.

B Training with Geometric Correspondences

While originally introduced by [2], we utilize the adapted method by [4] for training without masks
in multi-object settings.

The training relies on sampling a set of corresponding pixels in image A and B, where both images
observe the same static scene and objects, but from different view points. By employing a contrastive
loss, the descriptors for each pixel pair are trained to have the same embedding, while separating all
other pixels in latent space. The view-invariance of the descriptors is the consequence of utilizing
images with different view points.

Geometric correspondence training exploits the geometric prior provided by a registered RGBD
sequence. As the relative pose between any two images in the sequence is known, and given the
depth and camera information, one can establish the per-pixel correspondence between each image
pair, allowing for straight-forward sampling correspondences.

In practice, depth data can be noisy or incomplete. For example, structured light cameras struggle
with transparent or black surfaces, and with higher measurement uncertainty around edges of ob-
jects. Thus, [2] perform a 3D-reconstruction of the scene, to render synthetic depth images which
are complete and denoised, albeit not perfect ground-truth. In the original approach, which focuses
on training with singulated objects, an automatic or manual mask generation of the object is per-
formed. As we deal with multi-object scenes, we follow [4] and instead record scenes with multiple
objects present and do not compute any masks. Hence, we sample correspondences anywhere in the
image and do not differentiate between object or background.

Instead, to sample correspondences we first prune the correspondence map from image A to B by
occlusion and field of view masking, then we sample a set of N pixel correspondences. As we apply
augmentations, the process can shift or remove pixels from either image. We need to account for
this in the sampling process. Given a set of sampled correspondences, we employ the same loss as
described for our synthetic view training.

C Training Details

The training settings, see Table 2, are shared for both the geometric and synthetic training, with
exceptions specified below. They follow the findings made by [4] for geometric training. They are
used for all experiments shown, unless specified otherwise.

We perform validation after each epoch and retain the checkpoint with the best score. The score
is evaluated with respect to the area under the curve (AUC) of the PCK@K (percentage of correct
keypoints). PCK@K is determined by taking a set of predictions and calculating the pixel error e
with respect to the corresponding ground-truth pixels. The percentage is given by the number of
predictions with a pixel error e < K. We evaluate the AUC for the range K € [1---100].

Both approaches, geometric and synthetic, are trained with the same augmentation parameters as
listed in Table 3. The major difference is that for synthetic training, we sample each augmenta-
tion with probability p = 1.0 , whereas for geometric training each augmentation is sampled with
p = 0.5. We found that the latter performed better.
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Table 2: Default training settings for both geometric and synthetic view training.

Parameter Setting
Latent dimension (default) 64
Temperature (NTXent) 0.07
Optimizer Adam [25]
Learning rate 0.0003
Number of correspondences per image pair 2048
Batch size 2
Batches per epoch 500
Validation every n epochs 1
Total epochs 250

Table 3: Settings for augmentations with respect to the Torchvision library implementation.

Parameter Setting
Color Jitter
Brightness 0.2
Contrast 0.2
Saturation 0.2
Hue 0.2
Affine
Rotation Angle  [0...359]
Scale [0.5...1.0]
Perspective
Distortion Scale 0.4
Resize& Crop
Scale [0.7...1.0]

D Training Datasets

This section gives more details on the data used during training of the described methods. Overall,
two different training dataset were used. One taken with a robot-mounted camera used for comparing
training with geometric and synthetic correspondence and for all results presented in section 4. And
another one with a fix-mounted camera used for the grasping experiment described in section 5.

D.1 Dataset with robot-mounted camera

Fig. 7 shows example images from this dataset. We prepared seven objects in a static scene and
recorded a stream of images with 30 frames per second, while the robot-mounted Realsense D435
camera moved in different perspectives around the scene. In total we took nine recordings like this
with different configurations of the same objects. Six of those recordings were used for training, one
for validation and one for testing. Each recording contains about 4400 images.

Figure 7: Three example images of the mixed training dataset that was taken with a robot-mounted
camera.
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D.2 Dataset for invariance tests

For the invariance tests reported in Sec. 4.2 we took data with the same setup of the robot mounted
camera and the same objects as reported above in Sec. D.1, but with dedicated camera movements.
These camera transformations are visualized in Fig. 8. The left shows the camera rotation (z-axis),
where the location of the camera is fixed with the camera plane parallel to the table. The camera is
then rotated around the z-axis. In the middle we show the camera moving in/out along the z-axis,
closer to and further away from the scene. The x and y-positions as well as the camera orientation
are kept stable. The last movement is the camera perspective movement. Here, the camera is moved
in z direction on a half-sphere around the scene changing the orientation to keep focus on the center
of the scene. During this movement the distance of the camera to the center of the scene is fixed.

. B> | af)

) scene on
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coordinate
system

Camera Rotation ~ Camera Moving Camera Perspective
(z-axis) In/Out (z-axis) (x-axis)

Figure 8: Camera transformations used for the invariance tests. Note thatt the origin of the coordi-
nate system is located in the center of the scene on the table.

D.3 Dataset with fixed-mounted camera

Example images of this dataset are shown in Fig. 9. It was recorded with a fixed-mounted Zivid
One+ camera. We recorded 529 images of randomly shuffled heaps of the objects presented in
section G. Additional data was held back for validation and testing.

Figure 9: Three example images of the training dataset for the grasping experiment.

E Additional Results

In the main section we provide results mostly in terms of the median pixel error and the 75% quantile
of pixel errors. In the following section, we provide the main results with additional metrics. Fur-
thermore, we present results on the generalization capabilities on a small test set featuring unknown
objects.
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E.1 Extended Main Results
The results of Sec. 4.1 are summarized in the Table 4 with additional metrics.
Table 4: Pixel errors (mean, median, quantiles), and percentage of correct keypoints (PCK@k)

metrics for geometric and synthetic correspondence training, evaluated on our kfold-cross validation
dataset as used in Sec. 4.1.

Quantile PCK@
Type Mean Median | 75% 90% 95% 3 5 10 25 50
Geometric

21.49 5.10 11.0 5025 10325 | 029 049 0.73 0.85 0.90

13.50 3.16 64 18.03 55.15 | 046 0.68 0.84 092 0.95
Synthetic

E.2 Results on Unknown Objects

We further investigate the performance of our model on objects not seen during train time. Both the
geometric and synthetic correspondence models were trained on the same kfold dataset splits of the
main section. We test on five new objects, not previously seen during training and validation. The
objects and their arrangement in the two test scenes are shown in Figure 10. We kept the training
setup as in Sec. 4.1, although we note, that better generalization might be achieved with different
configuration of hyper-parameters, the choice and amount of augmentation applied. However, the
overall trend is evident in the results compiled in Table 5.

Figure 10: Novel object test set consisting of two new scenes, with 5 novel objects.

Both approaches, SV and GC, exhibit a loss in performance, especially the geometric correspon-
dence training. While the median changes only slightly, we find a large increase with respect to the
90% and 95% quantile for both methods. Up to 25% of the sampled keypoints are now mispredicted
with an error nearly three times as high as before.

Using features from a purely pre-trained backbone, without further training, fails completely. Train-
ing on a generic dataset, such as COCO, yields surprisingly good results, but still fails to work
accurately. For more details on the pre-trained and SV-COCO setup, see the ablation study in Sec-
tion F.3.

We note that, as we train only on a set of unordered RGB images, fine-tuning the model for additional
new objects is as easy as adding a few new image taken of the novel objects. Hence, despite limited
generalization to completely new objects, the simple and efficient training of our proposal may
effectively compensates for it.
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Table 5: Pixel errors (mean, median, quantiles), and percentage of correct keypoints (PCK@k)
metrics for geometric and synthetic correspondence training, evaluated on two new scenes with 5
novel objects.

Quantile PCK@
Type Mean Median | 75% 90% 95% 3 5 10 25 50
GC 43.40 6.40 21.19 16225 280.64 | 0.23 041 0.63 0.77 0.82
SV 42.95 6.00 17.09 148.76 284.02 | 0.25 0.44 0.66 0.78 0.82

Pretrain Only 4996  22.47 | 42.01 112.70 26041 | 0.03 0.08 0.21 0.55 0.80
SV-COCO  42.35 4.12 943 165.06 302.76 | 0.36 0.58 0.76 0.82 0.85

F Ablation

F.1 Augmentations

Complementing the findings in section 4.2 we study the influence of different augmentations for
the synthetic correspondence training on the ability of the network to generalize to different camera
transformations. Fig. 11 shows the 75% quantile of the pixel error distribution for the synthetic
correspondence training with different augmentations. We find that affine transformations are most
critical, as only a model trained with it shows invariance to rotations, see Fig. 11a. This matches
the expectations as standard CNN are by default not invariant to rotations. Nevertheless, we find
that both resize&crop and perspective distortion both further improve the performance of just affine
transformations. In particular, for camera movements that induce perspective distortions and scale
changes, see Fig. 11c and Fig. 11b, the error decreases considerably. Lastly, we find that color
Jjitter further reduces the overall mean pixel error from 19.4 to 17.1 pixel. The improvement appears
modest, but we note that our test dataset was recorded at the same time as train and validation,
and the lighting conditions of the scene were not explicitly altered. For a complete table of all the
combinations of augmentations, see the Appendix.
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Figure 11: 75% quantile pixel error for different combinations of augmentation. Affine, Perspective,
Color Jitter, Resize & Crop, with respect to different tasks: (a) camera rotates around z-axis, (b)
camera moving closer and further away from the objects, (c) camera moving on a sphere in x-
direction around the objects, facing the objects. Note the scale of the y-axes.

To investigate the impact of each augmentation, we trained the synthetic approach with each combi-
nation and tested it on the same dataset as in Section 4.1. The full results are listed in Table 6.

We see that affine transformations have a strong impact on the overall performance. All other aug-
mentations, even the combination of color jitter, perspective and resize+crops, performs consider-
ably worse. This result confirms that for our approach affine transformations are indeed essential to
obtaining invariance to rotations with a CNN-based backbone network. Generally, all combinations
with affine augmentation further improve the models accuracy and robustness. An exception is the
combination of color jitter and affine, which seems to find a worse solution when combined.

We find that when using perspective distortion, the median typically seems to slightly decrease,
while the mean, as well as the 75% and 90% quantiles improve considerably. Hence, perspective
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Table 6: Pixel error (mean, median, 75% and 90% quantile) for different combinations of augmen-
tations for synthetic correspondence training. Abbreviations are as follows: Affine, Perspective,
Color Jitter, Resize & Crop.

Combination Mean Median 75% Quantile 90% Quantile
CI+A+P+RSC 17.18 5.00 10.05 37.48
A+P+RSC 19.42 5.10 10.44 49.38
CJ+ A +RSC 19.62 4.47 9.49 55.63
A +RSC 23.06 4.47 10.44 67.08
A+P 36.64 8.60 21.02 104.05
CI]+A+P 37.27 9.00 21.02 105.54
A 52.46 6.71 49.65 181.03
Cl+A 56.58 9.22 62.43 176.26
CJ+P+RSC 97.10 20.81 168.44 296.19
P +RSC 110.80 72.45 185.33 288.45
Cl+P 14476 118.43 226.37 342.49
P 15297 122.25 234.08 365.40
CJ +RSC 176.97 164.47 255.64 345.12
RSC 180.55 168.58 267.59 359.61
cJ 22743  211.21 316.31 412.00

distortions seem to play an important role in improving model robustness, but requires further in-
vestigation as to why the accuracy is negatively affected.

Color jitter seems to be the augmentation with the smallest impact. However, we note that while
we tested on different scenes, the lighting conditions are generally the same. Hence, on datasets,
and more importantly during model deployment, the impact of color jitter with respect to model
robustness and reliability could be larger.

Lastly, we see that the combination of all augmentations ensure the learned descriptor is not overly
focused on single type of invariance, but different kinds yielding the overall best result.

F.2 Probability of Augmenting and Number of Augmented Frames

In this experiment we vary two hyperparameters of our training: i) the chance that any given aug-
mentation might be applied (independently drawn), ii) number of views that will be augmented.

We evaluated each configuration on the invariance test dataset, with the results shown in Figure 12.

We find that augmenting just one or both images, has limited impact for both geometric and syn-
thetic correspondence training. For geometric training we find that our setting, which is using 50%
probability per augmentation, yields similar results compared to augmenting just one view. This
was already observed in [4]. We reconfirm, as reported by [4], that augmenting more heavily, e.g.,
both frames with each augmentation at 100%, has adverse effects on the performance of geometric
correspondences trained networks.

In contrast, the synthetic correspondence training is most strongly impacted by the probability, less
by the number of augmented images. This is not surprising, as unlike the geometric training, aug-
mentations are essential for the synthetic training, cf. Section F.1. Without any augmentations, both
views are identical and the network will only learn a trivial solution. Consequently, it is important
to increase the chance, or guarantee in some ways, that at least one frame is augmented. The dif-
ference between augmenting one or both views with high probability yields nearly the same results.
We note, that a more refined selection of differing probabilities per augmentation type would most
likely yield even better results, rather than just one global parameter choice.

F.3 Comparison to Baseline Methods and State-Of-The-Art Approaches
With this additional set of experiments we validate our assumption that domain specific data and

explicit augmentations for perspective changes are crucial for a good performance on the target
domain. For this, we compare our method to four different baseline methods:
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Figure 12: 75% quantile pixel error for different combinations augmentation probabilities p, and
number of augmented frames (#v), evaluated with respect to different tasks: (a) camera rotates
around z-axis, (b) camera moving closer and further away from the objects, (c) camera moving on a
sphere in x-direction around the objects, facing the objects. Note the scale of the y-axes.

1. GC Specific: Using data from different viewpoints ([1, 2, 4]), as already reported in the
main paper.

2. Pretrain only: Using the features from a pretrained ResNet backbone (on ImageNet), with-
out further fine-tuning. This serves as a naive baseline.

3. SC COCO: Using the method presented in this paper, but fine-tuned on COCO data instead
of domain-specific data.
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Figure 13: 75% quantile pixel error for different network and data configurations. Networks named
SC are trained using our proposed synthetic correspondence setup, GC using geometric correspon-
dences, and lastly, as sanity check, raw features extracted from our ImageNet-pretrained ResNet
backbone are named Pretrain only. SC COCO was trained using the COCO dataset, while networks
named Specific were trained using our dataset. We compare with respect to three view invariance
tasks: (a) camera rotates around z-axis, (b) camera moving closer and further away from the objects,
(c) camera moving on a sphere in x-direction around the objects, facing the objects. Note the scale
of the y-axes.

4. CATs: A state-of-the-art keypoint matching algorithm among the top ranking methods on
various keypoint matching datasets [26]. We compare to the pretrained method on PF-
Pascal as provided by the authors.

We evaluated all methods on our view-invariance test dataset, as described in 4.2. Figure 13 shows
the results.

Not surprisingly, the raw pretrain-only features, exhibit little to no rotational invariance, and gener-
ally lack view-invariance on other tests.

SC COCO does perform better than the pretrained-only method, especially for smaller transforma-
tion angles. However, it seems to not generalize well to larger transformation angles in our invari-
ance tests. This indicates that in-distribution training data is important for the accuracy we need for
the robotics use-case.

The keypoint matching method CAT's achieves very impressive results for semantic keypoint match-
ing, where e.g., the tip of a dog’s nose will be matched to a completely different dog’s nose in a
second image. Surprisingly, the method does not outperform the Pretrain only baseline on our test
dataset. We account this result to the following: (a) PF-Pascal has a limited number of classes and
the pretrained network overfits to those (b) The goal of CATs (and similar approaches) is seman-
tic keypoint matching. In this goal it achieves very impressive results. However, the goal of these
methods are not the very accurate matching of geometric points on target objects, which we need
for robotic grasping (see the reported mean pixel error in the original CATs paper).

The above experiments support our claim that that our proposed training schema with the choice of
augmentations and loss together with in-distribution training data containing scenes of the target ob-
jects, plays an important role to achieve sufficiently high accuracy for robotic grasping applications.

G Grasping Experiment

G.1 Objects

In Fig. 14 we show the objects we used in the grasping experiment. Each object is either challenging
to grasp with a suction gripper while relying only on depth images and geometrical features, or
successful grasps may damage the objects. Therefore, we wish to rely on human annotated grasp
preferences to avoid damage and improve success chances. Fig. 14a and Fig. 14b show gloves which
are only graspable on the paper label, which is also the preferred grasp location. Additionally, a
cutout at the top and plastic strips in the middle of the paper label make these objects challenging
to grasp. The depth camera may not recognize the small bumps in the depth image for the hangers
in Fig. 14c, therefore we would like to enforce grasping on the paper label. The non-rigid object in
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Fig. 14d is not particularly hard to grasp, but we wish to improve success chance by grasping in the
middle of the object. Similarly, the white box in Fig. 14e is not challenging to grasp, but grasping in
the middle improves the chance of success. The dense descriptor representation allows to accurately
locate the center for such textureless objects. The sponge in Fig. 14f has a cutout in the middle of the
packaging where suction grasps will fail, therefore we prefer to grasp towards the top, or bottom. As
the towel in Fig. 14g is clearly visible in the depth image, suction grasps will often fail on the towel,
but not on the label. The plastic cover in Fig. 14h does not show up on depth images, therefore we
prefer to focus the grasp towards the top of the packaging. Finally, the wet wipe in Fig. 141 is not
difficult to grasp, but we wish to avoid grasping by the package opening, which might be damaged
when using a suction gripper.

Lovely
Jasmine

(€9)

Figure 14: We used nine different objects in the grasping experiment. Some of these objects are
prone to fail when planning the grasp based on 3D geometry. In other cases a suction grasp may
damage parts of the objects. Therefore, using grasp preferences both improves grasp success and
avoids damaging object packaging.

G.2 Generating Grasp Preference Heatmaps

In this section we detail the computation steps of the grasp preference heatmap. The experiment
consists of an offline grasp preference annotation phase, and an online autonomous operation phase
performing the grasps in the bin.

Annotation phase. First an RGB image I showing the objects in the bin is presented. Then the
human clicks at pixel locations {k]} corresponding to preferred grasp locations. The descriptor

values d; = f(I;6)(k]) at these pixel locations are then stored into a keypoint database D = {d;}.
See Fig. 6a for an example image of the objects in the bin in a random configuration.
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Autonomous operation phase. During autonomous operation, the latest RGB image I taken of
the bin is evaluated with the trained network resulting in the descriptor image I; = f(I;6). Then,
keypoint heatmaps are generated from the database with h;(u,v) = exp(—dist (14, d;) /n), Vd; €
D, with 1) as a temperature parameter that controls the width of the heatmap. Finally, the individual
keypoint heatmaps are fused into a single heatmap function h(u,v) =, hj(u,v)/H, with H as a
normalization constant (see Fig. 6¢ for an illustration).
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