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1 Appendix
1.1 Relevancy as VLM’s confidence
In our experiments, we have observed that directly using VLM relevancy maps works better than binarizing
the relevancy maps with a cutoff threshold or clipping it. The former collapse activation magnitudes and
both are sensitive to the cutoff threshold. In contrast, our design choice of using raw VLM relevancy maps
contains the full range of relevancy activations. We hypothesize that relevancy maps activation magnitudes
give our models information about the VLM’s confidence.

This interpretation informed our design choice of Semantic Abstraction’s applications. For instance, for
Visually-Obscured Object Localization, the SemAbs module takes as input both the target and reference
object relevancy point clouds, even when the target object is visually-obscured or hidden. This allows
the VLM to inform our networks when it thinks an object is not present in the scene (please refer to the
project website for examples).

1.2 Network
We use a 3D U-Net [1] architecture as fencode, and a 2 layer MLP as fdecode. For our scattering operation,
we use max reduction, such that if multiple points are scattered into the same voxel, the voxel assumes
the max of the points’ features. Our voxel grid has lower and upper bounds (−1.0m,−1.0m,−0.1m) and
(1.0m,1.0m,1.9m) respectively. We use random transformations (translation, rotation, and scale) on input
and output point clouds, then filter points outside of the voxel grid bounds.

1.3 Relevancy Extractor details
We batch parallelize along all crops (within each scale), scales, augmentations, and prompts. Tuning the
sliding window step size requires trading off running time with relevancy map quality. In our experiments,
we use step sizes a quarter of the crop size for each scale, which qualitatively gave decent relevancy maps
while running in a reasonable amount of time.

In our experiments, we use multi-scale relevancy with 5 random RGB augmentations, horizontal flipping,
crop sizes in the range {h,h/2,h/3,h/4}, where h=896 is the image width, and strides one-fourth of
their respective kernel sizes. Our implementation takes 39.5±0.1s second for 100 labels (0.4 seconds per
label) on this configuration. In contrast, directly using Chefer et al.’s implementation in a sliding window
fashion takes a total of 2420.8±14.1 seconds (19.3 seconds per text label)

We have released our multi-scale relevancy extractor on Github and hosted a (CPU-only) Hugging Face
Spaces for demo purposes.

1.4 Data Generation and Training Details
OVSSC dataset. The training dataset contained 5063 views split across 100 scenes. The evaluation dataset
for novel rooms, novel visual, novel synonym, and novel classes contained 999, 999, 751, 1864 views
respectively, split across the 20 test scenes. We generate training data for fencode and fdecode using our
custom AI2-THOR [3] simulator. Since the original simulator does not provide functionality to output
3D occupancies, we implement this with spherical collision detection for each query point. To generate
views in the rooms, we spawn the robot at random locations and Z-rotations and render RGB-D images,
filtering views with too few objects. In each batch, we sample B scenes, K classes within each scene,
and N points within each Rproj. Using M query points, SemAbs module’s occupancy prediction for
each point is supervised to the ground-truth occupancies using binary cross entropy (BCE), optimized
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Figure 1: SSC Qualitative Comparisons.
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Figure 2: VOOL Qualitative Comparisons.

using the AdamW optimizer with learning rate 5e-4, a cosine annealing with warm restarts learning rate
scheduler. In our experiments, we use a B=4, K=4, N =80000, and M =400000. Our 200 epoch
training takes 2 days on a 4 NVIDIA A6000’s.

VOOL dataset. The training dataset contained 6085 views split across 100 scenes. The evaluation dataset
for novel rooms, novel visual, novel synonym, and novel classes contained 1244, 1244, 940, 597 views re-
spectively, split across the 20 test scenes. We focus on six common spatial prepositions: behind, left of, right
of, in front, on top of, and inside (Fig. 3). As in OVSSC (§??), we use our custom AI2-THOR [3] simulator
to generate training data. Specifically, we define “on top of” and “inside” using AI2-THOR’s receptacle
information, while “behind”, “left of”, “right of”, and “in front” are defined in a viewer-centric fashion.
Specifically, for these viewer-centric spatial relations, we first compute displacement between all pairs of
objects (using their ground truth 3D occupancies). Using these pairwise displacements, we determine if
there is a spatial relation (e.g. “left of”) between each pair if their displacement is aligned with the direction
(e.g. dot product with the view-centric left direction) and if the pair’s distance is small enough with respect
to each pair’s object dimensions. The latter condition handles the intuition that spatial relations aren’t usually
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Figure 3: Ground truth VOOL labels.

defined in an absolute frame, but instead relative to the relevant objects (e.g. a pen 1 meter to the right of
an eraser is not ”on the right of” the eraser, but a tree 1 meter to the right of a house is ”on the right of” the
house). To handle ambiguous descriptions (e.g. “banana in the cabinet” when there are multiple cabinets),
our ground truth positives contain all points consistent with the description (e.g. points in the “inside”
receptacle for all cabinets in view are labeled positive, Fig. 3, top right). We use the same hyperparameters
and training setup as in OVSSC with the following exceptions. First, K=6 is the number of descriptions
per scene. Second, the scaled-cosine similarlity between φ

Ztarget‖Zref
Q and fspatial(S) is supervised using BCE.

Novel Semantic Class. We chose 6 test classes, which were held out during training for Novel Class
evaluation. To ensure we covered the “inside” spatial relation for novel classes, we included “mug” (small
container), “pot” (medium container), and “safe” (larger container). We also included “wine bottle”, “teddy
bear” and “basket ball”. We chose these classes by looking at their naturally occurring frequency in views
generated in Thor [3], and chose classes that neither occurred too frequently (such that too many views will
be held out for testing) nor too infrequently (such that all views of the class are in one or two Thor rooms).

Novel Synonyms. For the following words, we replaced all of their occurences in text inputs (semantic class
inputs for OVSSC, description for VOOL), with the following words which had a similar semantic meaning.

• television: tv
• sofa: couch
• house plant: plant in a pot
• bookcase: bookshelf
• baseball bat: rawlings big stick

maple bat

• pillow: cushion
• arm chair: recliner
• bread: loaf of sourdough
• cell phone: mobile phone
• desktop: computer
• dresser: wardrobe

• dumbbell: gym weights
• fridge: refridgerator
• garbage can: trash can
• laptop: computer
• outlet: eletric plug
• stairs: staircase

1.5 Things which did not work

Segmentation from Relevancy. Thresholding the raw relevancy activation maps would give a binary
mask that can be interpreted as CLIP’s segmentation for some class. However, we hypothesize this
performs poorly for three reasons. First, relevancy activations have different magnitudes for different
classes (e.g. much stronger for “plant” than for “wall”) and different views (e.g. much stronger for a side
view of a “drill” than a top down view of a “drill”) which means a single threshold value doesn’t work for
all cases. Second, relevancy highlights what a perception model “looked” at to make a certain prediction,
which is rarely the entire object. For instance, we observed that relevancy maps for “table” typically only
highlight parts of the legs and not the entire object. Lastly, relevancy activations also give information
on the VLM’s uncertainty. While these raw values aren’t interpretable, a neural network can be trained
to extract information from these raw relevancy activation values. This means that while raw activations
aren’t that useful for interpretability purposes, they can be used as input to a network just fine.
Scaling Laws. The results for CLIP [4] demonstrate that larger VITs demonstrate better zero-shot
robustness. We were hoping to show that using larger CLIP VIT models with the same training setup
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Figure 4: SemAbs’s OVSSC Confusion Matrix. Some of the biggest non-diagonal values include the pairs (door,
door knob),(floor, carpet), (photo board, poster) and (photo frame, poster). Objects which don’t co-occur in the same
view in our testing dataset are colored white (e.g. wine glass and toilet paper, white board and egg).

also exhibit the same performance scaling. To our surprise, relevancy maps from any CLIP model other
than the B/32 model didn’t look promising. This is a known phenomenon with the relevancy extraction
approach we built upon.

1.6 More results
OVSSC Qualitative Comparison. In our qualitative OVSSC comparisons (Fig. 1), we observed that both
baselines tend to perform poorly on small objects, such as “outlet” (first row) and “rubiks cube” (second
row). In addition, while the SemAware baseline can give reasonable predictions on training classes, such
as floor, wall, and sofa, it struggles with novel classes, like “roomba” (completely absent, first row) or
“lego technic excavator” (wrong prediction, second row).

VOOL Qualitative Comparison. We show qualitative VOOL comparisons in Fig. 2. The SemAware
baseline struggled with descriptions containing unknown semantic classes (first two rows) and incorrectly
identified the piano as a drawer (third row). Given a suboptimal relevancy map as input, the SemAbs
+ [2] baseline misses the small reference objects in all three cases and predicted incorrect regions as a
result. Even ClipSpatial, our quantitatively strongest baseline, did not have enough information to properly
learn spatial relations (second row, incorrectly predicted a region in front of the book, not behind) when
spatial relations were also abstracted into relevancy maps.
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Approach Spatial Relation Novel Room Novel Visual Novel Vocab Novel Class

Semantic Aware in 15.0 14.7 7.6 1.8
on 9.0 8.9 11.4 4.5
on the left of 11.2 11.1 14.4 4.0
behind 12.8 12.6 14.1 2.2
on the right of 13.1 13.0 11.5 3.4
in front of 11.2 11.1 9.3 2.2
mean 12.1 11.9 11.4 3.0

ClipSpatial in 9.6 8.6 7.1 3.3
on 14.1 12.1 18.5 20.0
on the left of 11.0 9.4 14.2 13.2
behind 11.3 9.9 14.1 8.9
on the right of 12.1 10.6 16.2 11.5
in front of 12.3 10.3 15.7 9.9
mean 11.7 10.1 14.3 11.2

SemAbs + [Chefer et al] in 11.8 11.1 5.7 2.1
on 7.0 6.7 11.3 7.1
on the left of 9.5 9.3 13.7 4.9
behind 7.6 7.6 10.6 2.5
on the right of 9.2 9.2 11.0 3.9
in front of 9.4 9.0 12.0 3.3
mean 9.1 8.8 10.7 4.0

Ours in 17.8 17.5 8.5 7.3
on 21.0 18.0 27.2 28.1
on the left of 22.0 20.3 27.7 25.1
behind 19.9 18.0 22.8 16.7
on the right of 23.2 21.7 28.1 22.1
in front of 21.5 19.4 25.8 19.1
mean 20.9 19.2 23.4 19.7

Table 1: Visually Obscured Object Localization by Spatial Relation.

1.7 VOOL Performance Breakdown by Spatial Relation
We include a table of VOOL results, with performance divided up by each spatial relation in Table 1. We
observed that our approach consistently outperforms all other approaches.
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