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Appendix

We provide details omitted in the main text.

• Section 1 provides more visualization examples and comparisons of planning results using
the inpainted semantic map. Specifically, we show visual comparisons to baseline methods
(i.e., Pix2Pix [1], Pix2PixHD [2] and DeepFillV2 [3]).

• Section 2 provides ablation studies for our proposed inpainting model. Specifically, fol-
lowing the vision community convention, we show mIOU results for the three ablation
models.

• Section 3 contains studies of our planning framework for simulated congested road condi-
tions.

• Section 4 is a brief discussion on failure conditions for our planning framework.

• Our code demo for our inpainting model and path planner: https://github.com/
genplanning/generative_planning.git.

1 More Visualization Results

Visual comparisons between our inpainting model and other baselines. All images shown are
randomly-selected from our test set.

Figure 1 shows visual comparisons between the input lidar, ground truth (GT), our model, and
Pix2Pix [1]. Our model (third column) consistently plans longer paths than Pix2Pix (rightmost
column). No blue dots means no path is found. While Pix2Pix demonstrates a clear improvement
over the initial lidar scan (leftmost column), it is clear that our modifications and new loss functions
are an improvement on inpainting performance.

Figure 2 shows visual comparisons with Pix2PixHD [2]. All models show a clear performance
improvement compared with the initial lidar scans (leftmost column). Our model (third column)
shows a clear improvement on Pix2PixHD (rightmost column). For example, in the third row from
the bottom, our model is able to inpaint a path much closer to the green dot (goal), and also more
similar to the GT, compared to Pix2PixHD.

Figure 3 shows visual comparisons with DeepFillV2 [3]. DeepFillV2 (rightmost column) performs
poorly compared with our other baselines qualitatively. It is unable to fill in the sparse semantic
lidar points (rightmost column; rows one, four, and seven), and the output of the network is still a
sparse BEV point cloud.

2 Ablation Study

We perform a detailed ablation study to assess the performance improvements from each of our
proposed components and loss terms. We use mIOU, which is a standard metric for semantic pre-
diction, to evaluate the semantic prediction results in our ablation studies. We evaluate the mIOU
results for the road class in our evaluation using the entire test set, as that is the class used to define
the navigable road. In addition to the mIOU results, we evaluate Frechet distance, path length, and
average angle distance for the test set of Route 0 (See Table 1 in the paper for more details about
training and test sets). Table A1 summarizes the result. We begin with a baseline paired translation
algorithm (Pix2Pix [1]) (Row 1). By adding our proposed components on top of the baseline algo-
rithm one by one (Row 2-4), we can obtain our proposed model and show the evaluation results for
our proposed model in Row 5. We have the following observations from Table A1:

• The evaluation results increase row by row (since the smaller the distance, the better the
planned trajectory. So, the decreasing of Frechet distance [4] and angle difference imply
improvement of evaluation results). We conclude each of the proposed components for
modifying Pix2Pix [1] is indispensable for our proposed model.

• From the degree of improvement row by row, we find that adding the patchNCE loss and
replacing the UNet generator [1] with the two stage generator [2] demonstrates the most
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Figure 1: Comparison of randomly-selected inpainting and planner performance with our model, Pix2Pix [1],
and ground truth (GT). Columns: (leftmost) Lidar scan (OL), (second) GT, (third) Ours and (rightmost)
Pix2Pix. 3



Figure 2: Comparison of randomly-selected inpainting and planner performance with our model,
Pix2PixHD [2], and ground truth (GT). Columns: (leftmost) OL, (second) GT, (third) Ours and (rightmost)
Pix2PixHD. 4



Figure 3: Comparison of randomly-selected inpainting and planner performance with our model, Deep-
FillV2 [3], and ground truth (GT). Columns: (leftmost) OL, (second) GT, (third) Ours and (rightmost) Deep-
FillV2. 5



Table A1: Ablation study of our proposed models.
Arch+loss mIOU ↑ Frechet distance (pixel) ↓ Path length (%) ↑ Angle Difference (◦) ↓

U-Net encoder-decoder generator [1]+PatchGAN discriminator+GAN loss [1]+L1 55.11 12.8015 75.92 11.87
Two stage generator [2]+PatchGAN discriminator [1]+GAN loss+ L1 58.25 9.219 77.38 9.76
Two stage generator [2]+multi-scale discriminator [2]+GAN lossr+ L1 61.93 9.08 78.48 8.67
Two stage generator [2]+multi-scale discriminator [2]+GAN loss+ inpainting-targeted L1 62.50 8.99 78.85 7.18
Two stage generator [2]+multi-scale discriminator [2]+GAN loss+ inpainting-targeted L1+PachNCE (Ours) 65.66 8.17 83.32 6.53

obvious improvement. We conclude they are the two most important components for our
proposed inpainting model.

3 Experiments for Congested Road Conditions

To simulate a congested road, we use additional occlusion masks on the original lidar (OL) scans
(rectangles of size 200× 50 pixels) to simulate additional occlusions along the road. We run our in-
painting framework on the masked OL scans. We run experiments for one, two, and three occlusion
masks to simulate increasing scene difficulty for 180 frames from the test set. We also calculate the
percentage of the simulated occlusion to road ratio in terms of image pixels. The percentages are
6.71%, 10.96%, and 16.05% for one, two, and three masks respectively.

Table A2 shows the metrics described in the experimental evaluation section of our paper compar-
ing performance given number of simulated occlusions. We can see that performance drops as the
number of simulated occlusions increases. However, performance is still better than using the base-
line lidar map (original OL) for planning across all metrics, except for path length (%) for three
occlusions, even when the baseline map has no simulated masks.

Figure 4 shows qualitative inpainting results with occlusion masks. Even with three occlusion masks
which completely block out the intersection region (Figure 4(c)), our predictive model is still able
to fill in the rough form of the intersection (Figure 4(f)).

Table A2: Evaluation results for simulated occlusions
Frechet distance Average Angle difference Path length (%) Major branch prediction (%)

No occlusions 9.03 7.12 81.11 92.09
One occlusion 9.32 8.64 78.21 89.99
Two occlusions 10.72 10.09 70.73 86.05
Three occlusions 11.15 12.62 61.32 83.00
No occlusions (original OL) 21.32 14.57 62.06 60.87

4 Failure Case Evaluation

The main failure case in our experiments is when the predictive model is unable to predict a turn
or an intersection. This leads the predictive model to behave like the baseline original lidar (OL)
planner, so while the predictive model is not helpful in this case, it does not worsen the performance
compared to the baseline. In our experiments on our model, this case occurs only 1.3% of the time.
However, for the baseline OL planner, this failure case occurs 72.2% of the time.

The other potential failure case is if the model predicts a turn that does not exist. This is more
dangerous because if the robot plans a turn that does not exist, it could lead to collisions. However,
in our experiments this case does not occur.
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(a) one occlusion mask (b) two occlusion masks (c) three occlusion masks

(d) inpainting: one mask (e) inpainting: two masks (f) inpainting: three masks

Figure 4: Some examples of simulated occlusion masks. (Top Row): Lidar scans with occlusion
masks. (Bottom Row): Inpainting results on occlusion masks.
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