
Supplementary Material

In this supplementary material, We first present details and visualizations on how we generated Dtrain,
the training distribution of human agents in assistive itch scratching in Sec. A. We then present
the main algorithm pseudo-code for PALM in Sec. C. Next we provide implementation details of
di�erent methods in our main experiments in Sec. D and the ablation study of PALM in Sec. E and
an evaluation of PALM with a second task, bed bathing assistance, in Sec. F.

A Generating Human Populations

To train our robot using sim2real, we would like to have a set of diverse environments. However,
unlike single-agent domain randomization where we can vary environment parameters such as friction,
in assistive tasks the environment entails a changing user policy. It is not obvious how to best generate
a diverse population that captures user preferences, levels of disabilities, or movement characteristics.
Generating human motions that realistically capture the variation observed in physical human-robot
interaction has remained an unsolved challenge in robotics.

Figure 8: Visualization of humans generated of di�erent activity levels. From left to right we apply action
penalties 2p = 0,10,30,60. Qualitatively, increasing the penalty results in the human taking more steady actions
with less swinging motions. This results in the human being more likely to expose the itch spot for the robot to
scratch, as opposed to scratching themselves.

Co-Optimization Prior works in robotic assistance [3, 24] have demonstrated that by optimizing for
the same task objective, we can generate human and robot motions that coordinate towards the same
goal, such as robot-assisted dressing. Further more, we can leverage reward engineering [25, 26] to
generate a diverse set of motions.

To generate diverse population in itch scratching task, we explore two sources of diversities: (1) we
assign di�erent human action penalty 2p, where larger penalties lead to the human agent exerting less
e�ort. In the simulation experiment we use 2p = 3,3.5,4.

(2) We simulate di�erent itch positions on the human’s arm and train co-optimized human and robot
policies conditioned on them. This leads to qualitatively di�erent strategies for the human and the
robot. Note that this serves as the first step to understanding how di�erent methods generalize since
we never expect to be able to capture the diversity in humans perfectly. For training, we use Proximal
Policy Optimization (PPO) to optimize human and robot policies in an interleaving fashion. Note that

1

we also keep the co-optimized robot policy and use it to obtain expert actions for assistive policy
training (see Sec. 3.1 and supplement for full details).

Visualization Here we visualize trajectories from humans with di�erent action penalties in Fig. 9.
Note that higher penalties result in the human taking more steady actions of smaller magnitude.

B Comparison with other VAE baselines for sequential data

Note that our method relies on embedding human trajectories as sequential data into a latent space.
Our implementation uses the final hidden state of RNN as the input to variational autoencoder. This
is based on [27], which has been shown to be e�ective in embedding and generating sentences. Given
that there are other di�erent generative models for sequential data, our framework can be easily
combined with them. In fact, wee believe coming up with a better model for human embedding is a
future direction.

We hereby provide comparison with another di�erent generative sequential model [28]. Di�erent
from [27] that uses only the final hidden state, they construct a latent space for every intermediate
step in the sequential model. We keep all the experiment hyper-parameters the same, and concatenate
the final hidden state with observation as input to the robot policy. We show the results in

Normalized Reward Distribution Our Method [27] Baseline [28] RNN

Assistive Reacher
IND
OOD

0.72 ± 0.02
0.38 ± 0.10

0.66 ± 0.02
0.11 ± 0.01

0.62 ± 0.02
0.27 ± 0.09

Itch Scratching D1 IND
OOD

0.75 ± 0.01
0.48 ± 0.08

0.45 ± 0.04
0.32 ± 0.01

0.79 ± 0.01
0.25 ± 0.08

Itch Scratching D2 IND
OOD

0.58 ± 0.03
0.49 ±.0.02

0.70 ± 0.03
0.31 ± 0.05

0.44 ± 0.01
0.40 ± 0.02

Itch Scratching D3 IND
OOD

0.34 ± 0.02
0.25 ± 0.01

0.23 ± 0.22
0.13 ± 0.01

0.18 ± 0.01
0.16 ± 0.01

Table 1: Comparison with RNN-VAE baseline [28]

C Algorithm

We present the main algorithm for PALM assume we have access to training and test distributions
Dtrain and Dtest.

D Additional Training and Implementation Details

In our experiments in both the assistive reaching and assistive itch scratching, we use a recurrent
network over a sliding window of 4-time steps, each of which is a concatenated vector of observation
>C , human action 0HC�8 and robot actions 0RC�8 . For the current time step C, we use zero vector for
0HC and 0RC . We set the latent space dimension to be four, and use a recurrent network with six layers.
Our base policy network has four dimensions and hidden size of 100.

D.1 PPO and Behaviour Cloning

We need to train the base policy c' and the latent space encoder E\ (I;g) jointly because they
are interdependent — I is the input to c', and c' decides the data distribution which leads to
I. We simultaneously optimize the prediction loss in Eq. (2) and the policy loss using PPO [29]
algorithm. See Appendix D for more training details. To amend for the instability of training with a
population of humans, we leverage Behaviour Cloning, where we use expert robot policies obtained
via co-optimization (see Appendix A) to supervise c' on on-policy data. More specifically, we
query the expert actions 0exp

C in a DAgger fashion[30] 3 during training, and optimize 0
'
C to minimize

deviation from it: LBC =
Õ

C | |0exp
C � 0'C | |2. The overall policy optimization loss include three terms:

latent prediction loss, PPO loss and the Behaviour Cloning loss: LPALM = Lpred +LPPO +LBC.

3This ensures that we encounter no distribution shift at deployment time.

2

Algorithm 1 Prediction-based Assistive Latent eMbedding Training

Randomly initialize base policy c, encoder Eq parameterized by q, decoder D\ parameterized by
\. Empty replay bu�er ⇡1, window size F

for itr = 1, ..,#itr do
for 8 = 1, ..,#batch do

Sample cH8 ⇠Dtrain, optionally find pre-trained expert robot policy cE8
>0 env.reset()
Initialize history � q

for C = 0, ...,) do
Get latest F steps from �: ��F � [�F :].
IC Eq (>C ,��F)
0HC cH8 (>0)
0RC c(>C , IC),0eC cE8 (>C)
>C+1 env.step(0HC ,0RC)
Store (>C ,0HC ,0RC ,0eC ,��F) in ⇡1

end
end
for 9 = 1, ...,#opt do

Sample a batch of (>C ,0HC ,0RC ,��g) from ⇡1
Compute Lpred using Eq. (2), LPPO using [29] and LBC =

Õ
C | |0exp

C � 0'C | |2
Optimize \,q,c for LPALM = _predLpred +_PPOLPPO +_BCLBC

end
end

Algorithm 2 Prediction-based Assistive Latent eMbedding Test Time Adaptation

Sample cH ⇠Dtest, Initialize history � q, Empty trajectory data g

for 8 = 0, ..,#adapt do
>0 env.reset()
for C = 0, ...,) do

Get latest F steps from �: ��F � [�F :].
IC Eq (>C ,��F)
0RC c(>C , IC)
>C+1 env.step(0HC ,0RC)
Store (>C ,0HC ,��F) in g

end
Compute Lpred using Eq. (2) on g, \! \ � Xr\Lpred (E\ ,g).

end

D.2 Hyperparameters

PALM Training We use _PPO = 0.1,_BC = 1,_pred = 0.1 in our experiments. We find that the
behaviour cloning loss is essential for the Assistive Itch Scratching task. Under this hyperparameter
setting, we train for 200 iterations. During each iteration, we collect 19,200 state-action transitions,
which is evenly divided into 20 mini-batches. Each mini-batch is fed to the base policy and encoder
for 30 rounds to compute the loss and error for back-propagation. We set the learning rate to be
0.00005.

For PALM prediction training, we use a three-layer decoder with hidden size 12 to predict the next
human action from the hidden state from the encoder. To implement the KL regularization, follow
the standard VAE approach. We use two linear networks to transform the encoder hidden state into
` and f, which denote the mean and the standard deviation of the latent space. We then compute
approximate KL divergence to normal distribution on this latent distribution.

PALM Test Time Optimization At test time, we roll out the trained robot policy and collect data
with the same user for 25 iterations, or 2,500 time steps. This amounts to 150 seconds of wall clock
time. We then optimize for the prediction loss (including KL regularization term) using learning
rate of 0.0001 for one to five steps, and use the one with the lowest loss. We empirically find the

3

hyperparameters by doing the same process with humans from the training distribution, where we
collect a mini training set and mini evaluation set both of 25 iterations. We use the mini training set
to find the learning rate and use the evaluation set to ensure there is no over-fitting.

RILI/LILI Training We follow a similar approach to PALM, except that we learn to predict the next
state >C+1 and scalar reward.

RMA Training We follow the two-phase training procedure in [7]. Note that we find it crucial in
phase 2 to train the encoder with on-policy data, meaning that the regression data is collected by
rolling out actions output by the “recurrent learner”, not the trained network from phase 1. The phase
1 network is used simply for generating labels.

RNN/MLP Training. For RNN, we directly feed the hidden state of the recurrent encoder to the
policy network. The architectural di�erence between RNN and PALM is that we do not concatenate
the current observation >C to the encoded output. To ensure that the policy has at least the same
capacity as PALM, we use a base policy with the same number of parameters as in PALM.

E Ablation Studies

PALM Baselines Reach Itch D1 Itch D2 Itch D3

PALM test optim 0.43 ± 0.13 0.51 ± 0.08 0.50 ± 0.02 0.29 ± 0.02
PALM w/o test optim 0.38 ± 0.10 0.48 ± 0.08 0.49 ± 0.02 0.26 ± 0.01
No Lpred 0.30 ± 0.05 0.50 ± 0.08 0.45 ± 0.02 0.25 ± 0.01
2KL = 0 0.32 ± 0.08 0.47 ± 0.04 0.46 ± 0.01 0.23 ± 0.02
Frozen E 0.24 ± 0.04 0.21 ± 0.06 0.15 ± 0.07 0.11 ± 0.05

Table 2: Normalized Reward on Dtest, standard deviation over 3 seeds.

We include ablation studies of PALM in the main experiment in Sec. 4, where we study the e�ect of
test-time optimization, prediction loss, KL regularization and jointly training encoder E and policy c.

In the assistive reaching experiment, we observe that test-time optimization, Lpred, KL regularization,
and joint training all contribute to the OOD performance.

In the assistive itch scratching experiment, test time optimization and Lpred improve experiment
results in all the settings. Applying KL regularization provides some gain in the complex distribution
D3, but does not lead to improvement in simpler distribution D1 and D2.

F Additional Experiment: Bed Bathing Task

We further evaluate the performance of PALM in another assistive robotics task: robot-assisted
bathing. This task is a modified version of the bathing task introduced in Assistive Gym [3]. In this
task, we have a human lying on a tilted bed, with a robot mounted on the nightstand. The human can
move their right arm, and there is an identified patch of skin to be cleaned. Unlike the original bed
bathing task, where the entire right arm is covered in target points to be cleaned, we instead initialize
a fixed size region of points to be cleaned at a uniform randomly selected location along the surface
of the right forearm. The patch spans 10 centimeter along and 150 degrees around the forearm. Only
the human knows the center position of the patch, and the robot must infer the location of the patch
based on observations of the human motion. The points along the body are cleaned whenever the
robot initiates contact with the spot using its end-e�ector and applies a positive normal force. The
task reward is based on how many points are cleaned.

We generate synthetic humans by co-optimizing humans and robots conditioned on the centroid
position of the region to be cleaned. During co-optimization, we adopt the formulation in [3] where
both the human and the robot observe the centroid position along the human forearm. This helps
induce collaborative behaviour for the human and robot policies, where we then use the resulting
human as the synthetic population. During training, we blind of robot policy of the centroid position.
We use the co-optimized robot (observes the centroid position) as the oracle for querying expert actions
for Behaviour Cloning. We sample 18 humans from the training distribution, and save 6 humans from
the held-out distribution as the out-of-distribution evaluation. We use the same hyperparameters as
the itch scratching experiment.

4

Figure 9: Visualization of the bed bathing task (left), where the human lies on a tilted bed with a table-mounted
robot to clean an area on their arm. The area is random initialized (middle) on the forearm, where we hold out a
quarter of the length as the held out distribution. The results of the held-out distribution is visualized on the right.

As we see in the results in Fig. 9, PALM achieves better out-of-distribution results compared to the
baseline methods. We also observe that this performance gap is smaller than the itch scratching task.
We believe this is due to the nature of the bed bathing task, where a robot controller that maintains
contact with the human’s forearm can be su�cient for solving the task if the human policy learns to
move and rotate their forearm accordingly to help the robot.

5

	Introduction
	The Assistive Personalization Problem
	Learning Personalized Embeddings for Assistance with PALM
	Learning an Assistive Latent Space
	How to Construct the Latent Space
	Latent Space Adaptation at Test Time

	Experiments
	Environments
	Baselines
	Didactic Experiment in Assistive Reacher Environment
	Assistive Reacher Main Experiment
	Assistive Itch Scratch Main Experiment
	Limitations and Failure Cases

	Conclusion
	Generating Human Populations
	Comparison with other VAE baselines for sequential data
	Algorithm
	Additional Training and Implementation Details
	PPO and Behaviour Cloning
	Hyperparameters

	Ablation Studies
	Additional Experiment: Bed Bathing Task

