
8 Appendix
8.1 Mathematical Details of the IFL Problem Formulation

Recall that ROHE takes the expectation over a distribution of trajectories, p!,✓0(⌧), where each
trajectory ⌧ = (s0,a0, ..., sT ,aT) is composed of consecutive task episodes separated by resets
and where the state-action tuples come from both ⇡✓ and ⇡H . This distribution of trajectories is
induced by ! and ✓0 because ✓0 parameterizes the initial robot policy ⇡✓0 , and ! affects the states that
comprise Dt

H
, which updates the robot policy ⇡✓ for subsequent timesteps. In this section, we derive

the mathematical relationship between the trajectory distribution ⌧ ⇠ p!,✓0(⌧) and the allocation
policy !.

Given an allocation policy !, the human policy ⇡H , and the robot policy ⇡✓t at each timestep t, the
joint hybrid human-robot policy of all robots can be expressed as

⇡t

H[R
(s) =

2

64
⇡✓t(s1)(1� !(st,⇡✓t ,↵

t�1,xt)1) + ⇡H(s1) !(st,⇡✓t ,↵
t�1,xt)1

...
⇡✓t(sN)(1� !(st,⇡✓t ,↵

t�1,xt)N) + ⇡H(sN) !(st,⇡✓t ,↵
t�1,xt)N

3

75 , (4)

where (.) is an indicator function that selects the robot policy ⇡✓t if robot i is allocated to a human
and selects the human policy ⇡H(s) otherwise. For notational convenience, !(st,⇡✓t ,↵

t�1,xt)i :=P
M

j=1 ↵
t

ij
2 {0, 1}.

The trajectory distribution p!,✓0(⌧) can then be expressed as

p!,✓0(⌧) = p!,✓0(s
0,a0, ..., sT ,aT) (5)

= p̄0(s0)
TY

t=0

⇡t

H[R
(at|st)

T�1Y

t=0

p̄(st+1|st,at). (6)

We comment that the soft and hard reset can be easily incorporated into the transition dynamics p̄
depending on the task. For example, for constraint violations (i.e., hard resets) c(st

i
) = 1, we can set

p(st+k

i
|st

i
, at

i
) = �(st

i
) for 1  k  tR�1 and p(st+TR

i
|st

i
, at

i
) = p0

i
(s0) where �(·) is the Dirac delta

function and tR is the hard reset time. Similarly, for goal-conditioned tasks with goal g, soft resets
after achieving the goal can be expressed through the transition dynamics p(st+1

i
|st

i
, at

i
) = p0

i
(s0) if

st
i
✓ g. For MDPs with finite time horizon where the environment resets when the maximum time

horizon is reached, we can augment the state with additional time information that keeps track of
the timestep in each episode, and reset the state when it times out. In this case, the MDP transition
dynamics will be time-dependent: pt(st+1

i
|st

i
, at

i
).

8.2 Fleet-DAgger Algorithm Details

In this section, we provide a detailed algorithmic description of Fleet-DAgger.

Fleet-DAgger uses priority function p̂ and tT to define an allocation policy !. Concretely, it can
be interpreted as a function F where F (p̂) = !, i.e., a “meta-algorithm” (algorithm that outputs
another algorithm) akin to function composition. The pseudocode of Fleet-DAgger is provided in
Algorithm 1.

8.3 Additional Experiment Details

8.3.1 Simulation Hyperparameters

Implementations of C.U.R. and baselines are available in the code supplement, where the scripts
are configured to run with the same hyperparameters as the simulation experiments in the main text.
Recall that N = 100 robots, M = 10 humans, minimum intervention time tT = 5, hard reset time
tR = 5, and operation time T = 10000. For reference, additional parameters are in Table 1, where
|S| is the dimensionality of the (continuous) state space, |A| is the dimensionality of the (continuous)
action space, r̂ is the risk threshold below which robots are assigned zero risk, û is the uncertainty
threshold below which robots are assigned zero uncertainty, and tI is the length of the initial C.U.R.
period during which constraint violation is not prioritized.

14

Algorithm 1 Fleet-DAgger
Input: MDP M, Number of robots N , Number of humans M , Priority function p̂, Minimum teleoperation

time tT , Hard reset time tR
Output: Allocation policy !

1: function !(st, ⇡✓t , ↵t�1, xt) # The allocation policy ! returns a matrix ↵t 2 {0, 1}N⇥M

2: Compute priority scores of each robot: p̂(sti,⇡✓t) 8i = 1, ..., N
3: Initialize ↵t

ij = 0 8i, j
4: for i 2 {1, . . . , N} do
5: for j 2 {1, . . . ,M} do
6: if ↵t�1

ij
= 1 then # For robots that were receiving assistance during the last timestep,

check whether the minimum intervention time has lapsed using auxiliary information xt

7: if Intervention type for robot i = Hard reset and Intervention duration < tR then
8: ↵t

ij = 1

9: if Intervention type for robot i = Teleop and Intervention duration < tT then
10: ↵t

ij = 1

11: Let I = {i :
P

M

j=1 ↵
t

ij = 1} # Set of robots that will continue with past assistance

12: Let J = {j :
P

N

i=1 ↵
t

ij = 1} # Set of humans that will continue with past assistance

13: Sort robot indices with positive priority scores that are not in I from highest to lowest, denoted as
{i1, i2, ...}

14: Let k = 1
15: for j 2 {1, . . . ,M} \ J do
16: ↵t

ik,j
= 1

17: k = k + 1
18: return ↵

19: return !

Environment |S| |A| r̂ û tI
Humanoid 108 21 0.5 0.05 1000
Anymal 48 12 0.5 0.05 250
AllegroHand 88 16 0.5 0.15 2500
Table 1: Simulation environment hyperparameters.

8.3.2 Training Critic Q-Functions

Some IFL algorithms require pretraining a safety critic (C.U.R.) or goal critic (Fleet-ThriftyDAgger)
to assist in supervisor allocation. Here we provide details on how we train these critics in practice.
Additional details about training these critics in practice are also available in Recovery RL [67] and
ThriftyDAgger [9] for the safety critic and goal critic respectively.

To collect a dataset of constraint violations, we simply run Behavior Cloning for a fixed amount of
timesteps. Intuitively, since the initial robot policy ⇡✓0 is not highly performant, the robot should
expect to encounter constraint violations, and these violations will occur within the state distribution
visited by the robot fleet in the initial stages of online training. One could also inject noise into
the BC policy to induce more constraint violations, or explicitly solicit human demonstrations of
constraint violations as noted in [67]. For Humanoid, Anymal, and AllegroHand, we collect a dataset
of 19625 transitions with 376 constraint violations, 19938 transitions with 63 constraint violations,
and 19954 transitions with 47 constraint violations, respectively. The safety critic is then trained
via Q-learning for 3000 gradient steps where a constraint-violating transition can be interpreted as
incurring sparse reward r = 1 and all other transitions have reward r = 0. To reduce class imbalance
issues, transitions are sampled from the replay buffer such that constraint-violating samples constitute
25% of the minibatch, which was found to be useful in practice in [67].

To collect a dataset of successes to pretrain the goal critic, we instead run the expert policy ⇡H , which
is more likely to reach the goal. For AllegroHand, we collect a dataset of 19994 transitions with 489
successes. We then pretrain the goal critic in the same manner as the safety critic. Both the safety
and goal critic continue to update during online training with the additional constraint violation and
success data encountered.

15

Environment Algorithm Successes (") Hard Resets (#) Idle Time (#)
Humanoid BC 0.0 ± 0.0 11925.3 ± 118.8 62473.7 ± 869.1

Random 746.3 ± 40.5 340.0 ± 59.2 1700.0 ± 296.1
Fleet-ED 617.7 ± 66.3 570.3 ± 139.0 2851.7 ± 694.8
C.U.R. 771.0 ± 25.5 289.3 ± 21.1 1446.7 ± 105.3
Expert 894 115 575

Anymal BC 32.7 ± 0.5 1134.3 ± 33.9 5669.7 ± 170.0
Random 207.3 ± 27.2 232.3 ± 89.6 1162.3 ± 449.1
Fleet-ED 257.3 ± 1.2 109.0 ± 16.9 545.0 ± 84.4
C.U.R. 257.0 ± 8.8 64.3 ± 8.6 321.7 ± 42.9
Expert 293 1 5

AllegroHand BC 70.0 ± 5.0 523.0 ± 9.4 2614.3 ± 46.4
Random 7360.3 ± 231.0 2954.3 ± 131.0 14767.7 ± 653.2
Fleet-ED 3032.0 ± 191.2 1764.7 ± 225.4 8818.0 ± 1129.7
Fleet-TD 4296.3 ± 161.7 1397.7 ± 112.6 6988.0 ± 562.9
C.U.R. 6032.7 ± 236.2 2343.7 ± 82.5 11715.0 ± 411.9
Expert 21609 1202 6013

Table 2: Robot policy performance for each of the algorithms in Section 6.2. We report cumulative successes,
hard resets, and idle time. We do not report return on human effort as teleoperation is not performed for this
experiment.

8.3.3 Physical Experiment Protocol
We execute 3 trials of each of 4 algorithms (Behavior Cloning, Random, Fleet-EnsembleDAgger,
C.U.R.) on the fleet of 4 robot arms for 250 timesteps each, for a total of 3⇥ 4⇥ 4⇥ 250 = 12000
individual pushing actions. Human teleoperation and hard resets were performed by the authors, where
teleoperation is collected through an OpenCV (https://opencv.org/) graphical user interface
and hard resets are physical adjustments of the cube toward the center of the workspace. Each of the
2 ABB YuMi robots is connected via Ethernet to a Linux machine on its local area network; the driver
program connects to each machine over the Internet via the Secure Shell Protocol (SSH) to send robot
actions and receive camera observations. The 2 YuMis are in different physical locations 0.5 miles
apart, and all 4 arms execute actions concurrently with multiprocessing. 10⇥ data augmentation is
performed on the initial offline dataset of 375 state-action pairs as well as the online data collected
during execution as follows:

• Linear contrast uniformly sampled between 85% and 115%
• Add values uniformly sampled between -10 and 10 to each pixel value per channel
• Gamma contrast uniformly sampled between 90% and 110%
• Gaussian blur with � uniformly sampled between 0.0 and 0.3
• Saturation uniformly sampled between 95% and 105%
• Additive Gaussian noise with � uniformly sampled between 0 and 1

80 ⇥ 255

8.3.4 Evaluating Trained Simulation Policies
Here we execute all policies from Section 6.2 after the 10,000 timesteps of online training for an
additional 10,000 timesteps without additional human teleoperation to evaluate the quality of the
learned robot policies in isolation. As in Section 6.2, N = 100 robots, M = 10 humans (for hard
resets only), tR = 5, and T = 10000, where allocation is performed by C-prioritization. We also
include the expert policy performance (all N = 100 robots teleoperated by the trained PPO supervisor
for T = 10000 steps) in the table for reference.

Results are in Table 2. We find that the policy learned via C.U.R. outperforms baselines and
approaches expert-level performance for Humanoid and Anymal, but is second most performant and
significantly below expert-level performance for AllegroHand, indicating T = 10, 000 timesteps is
insufficient for learning a highly performant robot policy in this challenging environment.

8.4 Hyperparameter Sensitivity and Ablation Studies
In this section, we run additional simulation experiments in the IFL benchmark to study (1) ablations
of the components of the C.U.R. algorithm (Figure 6), (2) sensitivity to the ratio of number of robots

16

https://opencv.org/

N to number of humans M (Figure 7), (3) sensitivity to minimum intervention time tT (Figure 8),
and (4) sensitivity to hard reset time tR (Figure 9). All runs are averaged over 3 random seeds, where
shading indicates 1 standard deviation.

Ablations: We test C.U.R.(-i), the C.U.R. algorithm without the initial period during which constraint
violation is not prioritized. We also test all subsets of the C.U.R. priority function without the initial
period. For example, U. indicates only prioritizing by uncertainty, and C.R. indicates prioritizing
by constraint violations followed by risk (no uncertainty). Results suggest that C.U.R. outperforms
all ablations in all environments in terms of ROHE and cumulative successes and is competitive
in terms of hard resets and idle time. However, as in the main text, C.U.R. and C. incur more
hard resets in AllegroHand than alternatives, as again, prioritizing constraint violations for a hard
environment where learning has not converged may ironically enable more opportunities for hard
resets. Interestingly, while C.U.R. outperforms ablations in ROHE in AllegroHand for large T ,
U -prioritization’s ROHE is significantly higher for small values of T . We observe that since U.
achieves very low cumulative successes in the same time period, U. must be requesting an extremely
small amount of human time early in operation, resulting in erratic ratio calculations.

Number of Humans: While keeping N fixed to 100 robots, we run C.U.R. with default hyperpa-
rameters and vary M to be 1, 5, 10, 25, and 50 humans. In the Humanoid and Anymal environment,
as expected, cumulative successes increases with the number of humans. The performance boost
gets smaller as M increases: runs with 25 and 50 humans have very similar performance. Despite
lower cumulative successes, M = 10 achieves the highest ROHE, suggesting a larger set of humans
provides superfluous interventions. We also observe that with only 1 human, the number of hard resets
and idle time is very large, as the human is constantly occupied with resetting constraint-violating
robots, which fail at a faster rate than the human can reset them. Finally, in the AllegroHand environ-
ment, the number of humans when M � 5 does not make much of a visible difference, perhaps due
to the relatively high number of cumulative successes.

Minimum Intervention Time: We run C.U.R. with default hyperparameters but vary tT to be 1, 5,
20, 50, 100, and 500 timesteps. We observe that both decreasing tT from 5 to 1 and increasing tT to
20 and beyond have a negative impact on the ROHE due to ceding control prematurely (in the former
case) and superfluous intervention length (in the latter). Hard resets are low and idle time is high for
large tT as the humans are occupied providing long teleoperation interventions. This also negatively
affects throughput, as cumulative successes falls for very large tT . Long interventions may also be
less useful training data, as in the limit these interventions reduce to more offline data (i.e., labels for
states encountered under the human policy rather than that of the robot).

Hard Reset Time: Finally, we run C.U.R. with default hyperparameters but vary tR to be 1, 5, 20,
50, 100, and 500 timesteps. As expected, the ROHE decreases as tR increases, as more human effort
is required to achieve the same return. The other metrics follow similar intuitive trends: increasing
tR results in a decrease in cumulative successes, decrease in hard resets, and increase in idle time.

Other Parameters: We also found that the batch size (256 in our experiments) and number of
gradient steps per experiment timestep (1 in our experiments) significantly impact the policy learning
speed as well as computation time, and the effect varies with the size of the fleet (N) and set of human
supervisors (M). This is because N and M (and !) determine how much new data is available at
each time t, the batch size and number of gradient steps determine how much data to update the policy
with at each time t, and updating the policy with backpropagation is the computational bottleneck in
the IFLB simulation.

17

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

C. C.U.R.U. R. C.U. U.R. C.R. C.U.R.(-w)

Figure 6: Ablations: Simulation results in the Isaac Gym benchmark tasks with ablations of C.U.R., where
the x-axis is timesteps from 0 to T = 10, 000. We plot the metrics described in 6.1. The C.U.R. algorithm
outperforms all ablations on all environments in terms of ROHE and cumulative successes (except AllegroHand
ROHE for low T values) and is competitive with ablations for cumulative hard resets and idle time.

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 10 25 50

Figure 7: Number of Humans: Simulation results in the Isaac Gym benchmark tasks with N = 100 robots
and M human supervisors, where M varies and the x-axis is timesteps from 0 to T = 10, 000.

18

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure 8: Minimum Intervention Time: Simulation results in the Isaac Gym benchmark tasks for variations in
minimum intervention time tT , where the x-axis is timesteps from 0 to T = 10, 000.

H
um

an
oi

d
A

ny
m

al
A

lle
gr

o
H

an
d

Cumulative
Successes

Cumulative
Hard Resets

Cumulative
Idle Time

Return on
Human Effort

1 5 20 50 100 500

Figure 9: Hard Reset Time: Simulation results in the Isaac Gym benchmark tasks for variations in hard reset
time tR, where the x-axis is timesteps from 0 to T = 10, 000.

19

	Introduction
	Related Work
	Allocating Human Supervisors to Robots at Execution Time
	Single-Robot, Single-Human Interactive Learning
	Multi-Robot Interactive Learning

	Interactive Fleet Learning Problem Formulation
	Interactive Fleet Learning Algorithms
	Fleet-DAgger
	Fleet-DAgger Algorithms

	Interactive Fleet Learning Benchmark
	Environments
	Software Architecture

	Experiments
	Metrics
	IFLB Simulation Experiments
	Physical Block-Pushing Experiment

	Limitations and Future Work
	Appendix
	Mathematical Details of the IFL Problem Formulation
	Fleet-DAgger Algorithm Details
	Additional Experiment Details
	Simulation Hyperparameters
	Training Critic Q-Functions
	Physical Experiment Protocol
	Evaluating Trained Simulation Policies

	Hyperparameter Sensitivity and Ablation Studies

