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A Method Details and Proofs

We first present the preliminary definitions in Section A.1and provide details for Definition 1 re-
garding translations and rotations on all 6 degrees of freedom in Section A.2. Then we show the
proof for main text Lemma 1 and Theorem 1.

A.1 Preliminary Definitions

Definition 1 ((restated) Position projective function). For any 3D point P = (X,Y, Z) ∈ P ⊂ R3

under the camera coordinate frame with the camera intrinsic matrix K, based on the camera motion
α = (θ, t) ∈ Z ⊂ R6 with rotation matrix R = exp(θ∧) ∈ SO(3) and translation vector t ∈ R3,
we define the position projective function ρ : P× Z → R2 and the depth function D : P× Z → R
for point P as

[ρ(P, α), 1]⊤ =
1

D(P, α)
KR−1(P − t), D(P, α) = [0, 0, 1]R−1(P − t) (1)

Definition 2 ((restated) Channel-wise projective transformation). Given the position projection
function ρ : P × Z → R2 and the depth function D : P × Z → R over dense 3D point cloud P,
define the 3D-2D global channel-wise projective transformation from C-channel colored point cloud
V = (RC ,P) ⊂ RC+3 to H ×W image gird X ⊂ RC×H×W as O : V × Z → X parameterized
by camera motion α ∈ Z using Floor function ⌊·⌋,

xc,r,s = O(V, α)c,r,s = Vc,P∗
α
,where P ∗

α = argmin
{P∈P|⌊ρ(P,α)⌋=(r,s)}

D(P, α) (2)

Specifically, if x = O(V, 0), we define the relative projective transformation ϕ : X × Z → X as,

ϕ(x, α) = O(V, α). (3)

Definition 3 ((restated) Camera motion ε-smoothed classifier). Let ϕ : X × Z → X be a relative
projective transformation given the projected image x at the origin of camera motion in the motion
space Z , and let ε ∼ Pε be a random camera motion taking values in Z . Let h : X → Y be a base
classifier h(x) = argmaxy∈Y p(y | x), the expectation of projected image predictions ϕ(x, ε) over
camera motion distribution Pε is q(y | x; ε) := Eε∼Pε

p(y | ϕ(x, ε)). We define the ε-smoothed
classifier g : X → Y as

g(x; ε) := argmax
y∈Y

q(y | x; ε) = argmax
y∈Y

Eε∼Pε
p(y | ϕ(x, ε)). (4)

A.2 Projective Function Details

Following (1), given 3D point P0 = (X0, Y0, Z0)
T under the camera coordinate frame, with

axis-angle or rotation vector θ = (θn1, θn2, θn3)
T ∈ R3, ∥θ∥2 = θ ∈ R and translation
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t = (tx, ty, tz)
T ∈ R3, the camera intrinsic matrix K of the camera is shown below.

K =

(
fx 0 cx
0 fy cy
0 0 1

)

R−1 =

 cos θ + (1− cos θ)n2
1 (1− cos θ)n1n2 + n3 sin θ (1− cos θ)n1n3 − n2 sin θ

(1− cos θ)n1n2 − n3 sin θ cos θ + (1− cos θ)n2
2 (1− cos θ)n2n3 + n1 sin θ

(1− cos θ)n1n3 + n2 sin θ (1− cos θ)n2n3 − n1 sin θ cos θ + (1− cos θ)n2
3


First we find the depth of P0 given camera pose α = {θ, t},

D(P0, α) = [(1− cos θ)n1n3 + n2 sin θ](X0 − tx)

+ [(1− cos θ)n2n3 − n1 sin θ](Y0 − ty)

+ [cos θ + (1− cos θ)n2
3](Z0 − tz)

Then we find the pixel coordinates on the image.

ρ1(P0, α) =
1

D(P0, α)
{[fx[cos θ + (1− cos θ)n2

1] + cx[(1− cos θ)n1n3 + n2 sin θ]](X0 − tx)

+ [fx[(1− cos θ)n1n2 + n3 sin θ] + cx[(1− cos θ)n2n3 − n1 sin θ]](Y0 − ty)

+ [fx[(1− cos θ)n1n3 − n2 sin θ] + cx[cos θ + (1− cos θ)n2
3]](Z0 − tz)}

ρ2(P0, α) =
1

D(P0, α)
{[fy[cos θ + (1− cos θ)n2

2] + cy[(1− cos θ)n2n3 − n1 sin θ]](Y0 − ty)

+ [fy[(1− cos θ)n1n2 − n3 sin θ] + cy[(1− cos θ)n1n3 + n2 sin θ]](X0 − tx)

+ [fy[(1− cos θ)n2n3 + n1 sin θ] + cy[cos θ + (1− cos θ)n2
3]](Z0 − tz)}

Specifically, the camera motion on each axis is shown as follows.

A.2.1 Tz: translation along depth axis

In this case, we have θ = 0, tx = ty = 0

DTz
(P0, α) = Z0 − tz, ρTz

(P0, α) = (
fxX0 + cx(Z0 − tz)

Z0 − tz
,
fyY0 + cy(Z0 − tz)

Z0 − tz
)

A.2.2 Tx: translation along depth-orthogonal horizontal axis

In this case, we have θ = 0, tz = ty = 0

DTx
(P0, α) = Z0, ρTx

(P0, α) = (
fx(X0 − tx) + cxZ0

Z0
,
fyY0 + cyZ0

Z0
)

A.2.3 Ty: translation along depth-orthogonal vertical axis

In this case, we have θ = 0, tz = tx = 0

DTy (P0, α) = Z0, ρTy (P0, α) = (
fxX0 + cxZ0

Z0
,
fy(Y0 − ty) + cyZ0

Z0
)

A.2.4 Rz: rotation around depth roll axis

In this case, we have n1 = n2 = 0, n3 = 1, tx = ty = tz = 0

DRz (P0, α) = Z0, ρRz (P0, α) = (
fx cos θX0 + fx sin θY0

Z0
+ cx,

fy cos θY0 + fy sin θX0

Z0
+ cy)

A.2.5 Rx: rotation around depth-orthogonal pitch axis

In this case, we have n2 = n3 = 0, n1 = 1, tx = ty = tz = 0

DRx
(P0, α) = − sin θY0 + cos θZ0

ρRx
(P0, α) = (

fxX0

−Y0 sin θ + Z0 cos θ
+ cx,

Y0 cos θ + Z0 sin θ

−Y0 sin θ + Z0 cos θ
fy + cy)
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A.2.6 Ry: rotation around depth-orthogonal yaw axis

In this case, we have n1 = n3 = 0, n2 = 1, tx = ty = tz = 0

DRy
(P0, α) = sin θX0 + cos θZ0

ρRy (P0, α) = (
X0 cos θ − Z0 sin θ

X0 sin θ + Z0 cos θ
fx + cx,

fyY0

X0 sin θ + Z0 cos θ
+ cy)

A.3 Proof of main text Lemma 1

Lemma 1 (restated of main text Lemma 1, Compatible Relative Projection with Global Projection).
With a global projective transformation O : V × Z → X from 3D point cloud and a relative
projective transformation ϕ : X × Z → X given some original camera motions, for any α1 ∈
Z there exists an injective, continuously differentiable and non-vanishing-Jacobian function γα1 :
Z → Z such that

ϕ(O(V, α1), α2) = O(V, γα1
(α2)), V ∈ V, α2 ∈ Z. (5)

Proof. Given the fixed colored point cloud map V ∈ V = (RC ,P), decompose the sequential
relative camera motions α1, α2 into R1, t1 and R2, t2, where α1 = (θ1, t1), R1 = exp((θ1)

∧) ∈
SO(3) and α2 = (θ2, t2), R2 = exp((θ2)

∧) ∈ SO(3). Following Definition 1, for any fixed 3D
point P0 ∈ P under the initial camera pose, denote the coordinate after each relative camera motion
as P1, P2, we have,

P0 = R1P1 + t1, P1 = R2P2 + t2

Therefore, the composed relative camera motion is derived as,

P0 = R1,2P2 + t1,2 = R1R2P2 + (R1t2 + t1)

So the composition of camera motion is α1 ◦ α2 = (θ1,2, t1,2) = (θ1,2, R1t2 + t1), where
R1,2 = exp((θ1,2)

∧) = R1R2. Let the γ function in (5) be the composition of camera motion,
i.e., γα1

(α2) = α1 ◦ α2, where the projection function with min-pooling in Definition 2 is also
satisfied. Specifically, if the rotation is around a fixed axis, γα1

(α2) = α1 ◦ α2 = α1 + α2 holds
due to the special case of multiplication in SO(3).

Based on Definition 2, denote the point cloud coordinates after camera motion α1 to be V α1 , where
the projected image is

O(V, α1) = O(V α1 , 0) = xα1

Then based on the composition of camera motion, it holds that

O(V, γα1
(α2)) = O(V, α1 ◦ α2) = O(V α1 , α2)

Following Equation (3) in Definition 2, we have ϕ(xα1 , α2) = O(V α1 , α2) So combining the deriva-
tions above, we have

ϕ(O(V, α1), α2) = ϕ(O(V α1 , 0), α2)

= ϕ(xα1 , α2)

= O(V α1 , α2)

= O(V, α1 ◦ α2)

= O(V, γα1
(α2))

which concludes the proof.

A.4 Proof of main text Theorem 1

Lemma 2 (Corollary 7 in [1], Corollary 3 in [2]). Suppose Z = Rm, Σ := diag(σ2
1 , . . . , σ

2
m),

ε0 ∼ N (0, Σ) and ε1 := α+ ε0 for some α ∈ Rm. Suppose that yA = g(x; ε0) at x ∈ X for some
yA ∈ Y and let pA, pB ∈ [0, 1] be bounds to the class probabilities, i.e.,

q(yA | x, ε0) ≥ pA > pB ≥ max
y ̸=yA

q(y | x, ε0). (6)
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Then, it holds that q(yA|x; ε1) > maxy ̸=yA
q(y|x; ε1) if α satisfies√√√√ m∑

i=1

(
αi

σi

)2

<
1

2

(
Φ−1(pA)− Φ−1(pB)

)
. (7)

The rigorous proof on Lemma2 can be found in [1].

Theorem 1 (restated of main text Theorem 1, Robustness certification under camera motion with
fixed-axis rotation). Let α ∈ Z ⊂ R6 be the parameters of projective transformation ϕ with trans-
lation (tx, ty, tz)

T ∈ R3 and fixed-axis rotation (θn1, θn2, θn3)
T ∈ R3,

∑3
i=1 n

2
i = 1, suppose

the composed camera motion ε1 ∈ Z satisfies ϕ(x, ε1) = ϕ(ϕ(x, ε0), α) given some α ∈ Z
and zero-mean Gaussian motion ε0 with variance σ2

x, σ
2
y, σ

2
z , σ

2
θ for tx, ty, tz, θ respectively, let

pA, pB ∈ [0, 1] be bounds of the top-2 class probabilities for the motion smoothed model, i.e.,

q(yA | x, ε0) ≥ pA > pB ≥ max
y ̸=yA

q(y | x, ε0). (8)

Then, it holds that g(ϕ(x, α); ε0) = g(x; ε0) if α = (tx, ty, tz, θn1, θn2, θn3)
T satisfies√(

θ

σθ

)2

+

(
tx
σx

)2

+

(
ty
σy

)2

+

(
tz
σz

)2

<
1

2

(
Φ−1(pA)− Φ−1(pB)

)
. (9)

Proof. For the original transformation ϕ parameterized with α = (tx, ty, tz, θn1, θn2, θn3)
T ∈

Zϕ ⊂ R6 with the fixed normalized rotation axis (n1, n2, n3), we have the Gaussian noise
for each entry tx ∼ N (0, σx), ty ∼ N (0, σy), tz ∼ N (0, σz), θn1 ∼ N (0, σ2

θn
2
1), θn2 ∼

N (0, σ2
θn

2
2), θn3 ∼ N (0, σ2

θn
2
3). We can find the covariance matrix

Σ = E[(α− µα)(α− µα)
⊤] =


σ2
x 0 0 0 0 0
0 σ2

x 0 0 0 0
0 0 σ2

x 0 0 0
0 0 0 n2

1σ
2
θ n1n2σ

2
θ n1n3σ

2
θ

0 0 0 n1n2σ
2
θ n2

2σ
2
θ n2n3σ

2
θ

0 0 0 n1n3σ
2
θ n2n3σ

2
θ n2

3σ
2
θ


Note that since the the last three entries regarding rotation angle θ is correlated, the covariance
matrix is not full rank and not positive definite. Therefore, we can find the non-singular linear
transformation A to make all entries independent in α̃ = Aα ∈ Z̃ϕ ⊂ R6. Specifially,

α̃ = Aα =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 n1 n2 n3

0 0 0 n1
1
n2

− n2 n3

0 0 0 n1 n2
1
n3

− n3




tx
ty
tz
θn1

θn2

θn3

 =


tx
ty
tz
θ
0
0


Then for α̃, β̃ from the transformed parameter space where the transformation is additive γα̃(β̃) =
α̃+ β̃, we find the covariance matrix as

Σ̃ = E[(α̃− µα̃)(α̃− µα̃)
⊤] = diag(σ2

x, σ
2
y, σ

2
z , σ

2
θ , 0, 0)

For the projective transformation ϕ̃ parameterized in space Z̃ϕ, we have

ϕ̃(x, ε̃) = ϕ̃(x,Aε) = Õ(V,Aε) = O(V, ε) = ϕ(x, ε)

. Therefore, Lemma 1 holds for projective transformation ϕ̃ over parameter space Z̃ϕ. Therefore,
for the composed transformation parameterized in space Z̃ϕ we have

ϕ̃(x, ε̃1) = ϕ̃(ϕ̃(x, ε̃0), α̃) = ϕ̃(Õ(V, ε̃0), α̃) = Õ(V, γε̃0(α̃)) = Õ(V, ε̃0 + α̃) = ϕ̃(x, ε̃0 + α̃)

=⇒ ε̃1 = ε̃0 + α̃
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Together with Z̃ϕ = R6, Σ̃ = diag(σ2
x, σ

2
y, σ

2
z , σ

2
θ , 0, 0), we have ε̃0 ∼ N (0, Σ̃) and ε̃1 := α̃ + ε̃0

for α̃ = (tx, ty, tz, θ, 0, 0)
T ∈ R6,√√√√ 6∑

i=1

(
αi

σi

)2

=

√(
θ

σθ

)2

+

(
tx
σx

)2

+

(
ty
σy

)2

+

(
tz
σz

)2

the smoothed classifier for pA − pB-confidence condition of (6) in Lemma 2 is satisfied based on ,

q(y | x; ε̃) = Eε̃∼Pε̃
p(y | ϕ̃(x, ε̃)) = Eε∼Pε

p(y | ϕ̃(x,Aε)) = Eε∼Pε
p(y | ϕ(x, ε)) = q(y | x; ε)

so by Lemma 2, it holds that

q(yA|x; ε1) = q(yA|x; ε̃1) > max
y ̸=yA

q(y|x; ε̃1) = max
y ̸=yA

q(y|x; ε1)

Then according to Definition 3, we have

g(x; ε1) = argmax
y∈Y

q(y | x; ε) = yA = g(x; ε̃0) = g(x; ε0) (10)

Furthermore, combining Definition 2, Definition 3 and Lemma 1, it holds that

g(ϕ(x, α); ε0) = g(O(V, α); ε0) (By Definition 2)
= argmax

y∈Y
Eε0∼Pε

p(y | ϕ(O(V, α), ε0)) (By Definition 3)

= argmax
y∈Y

Eε0∼Pεp(y | O(V, γα(ε0))) (By Lemma 1)

= argmax
y∈Y

Eε0∼Pε
p(y | O(V, ε1))

= argmax
y∈Y

Eε0∼Pε
p(y | ϕ(x; ε1)) (By Definition 2)

= g(x; ε1) (By Definition 3)
= g(x; ε0) (By Lemma 2 and Equation (10))

which concludes the proof.

B More Experiment Details

B.1 MetaRoom Dataset

The entire room contains four surrounding walls with a length of 6 m and a height of 3.7 m, a ceiling
and floor with size of 6 m × 6 m. On the walls, there is a door with the default size, a window with
the default size, two paintings, two photographs, two closets, a blackboard, and a clock. In the center
of the room, there is a small four-leg table with the size of 0.5 m × 0.5 m and the height of 1 m.
In order to make the reconstructed point cloud have a consistent appearance under different camera
perspectives, the texture of all the walls, ceiling, floor, door, window, and the table is Roughcast to
avoid reflections. All the objects are listed in Figure 1.

To collect the whole point cloud, we first collect point cloud maps for table objects, background
walls, floor, and ceiling, respectively, and then merge them together with downsampling to the
density of 0.0025 m. To collect each point cloud map, we rotate the camera around the object where
the focal length of the camera is 3090.194 and resolution is 1280 × 720. We collect the camera
poses and images with the traverses under roll angle of −5◦, 0◦, 5◦, yaw angle of 0◦ ∼ 360◦ with
the interval of 10◦, pitch angle between 30◦ ∼ 80◦ with the interval of 5◦ and radius of 2.1 m, 2.5
m, 3.0 m, 3.4 m for table object, background walls, floor and ceiling with corresponding camera
orientations. See the attached code for more details.

For the collection of the training set and test set, we use the collection strategy stated in Section 4.1
of the main text. To speed up the image projection for testing and evaluation, we first collect images
with poses using focal length of 3090.194 and resolution of 1280× 720 to construct the local point
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(a) Apple (b) Beer Bottle (c) Biscuit Box (d) Book (e) Can

(f) Carafe (g) Cereal Box (h) Fruit Bowl (i) Honey Jar (j) Jam Jar

(k) Laptop (l) Monitor (m) Office Tele-
phone

(n) Orange (o) Paper Boat

(p) Rubber Duck (q) Soccer Ball (r) Telephone (s) Water Bottle (t) Wine Glass

Figure 1: All the objects in the MetaRoom dataset

Camera motion type Tz Tx Ty Rz Rx Ry

Motion Agumentation
(Gaussian variance) 0.1 m 0.05 m 0.05 m 0.122 rad

(7◦)
0.0436 rad

(2.5◦)
0.0436 rad

(2.5◦)

Table 1: Motion augmentation details

cloud within each perturbation radius. Then collect the test camera poses with the intrinsic matrix of
the focal length of 386.274 and resolution of 160×90, where the low-resolution images are directly
used for model training and evaluation without resizing to rigorously follow Definition 2. For model
training with data augmentation, we collect all images under perturbations offline for computational
efficiency, which is consistent with training epochs of undefended vanilla models.

B.2 Model Training

To train the base classifiers, we train the ResNet-18 and ResNet-50 models from random initializa-
tion for both motions augmented and undefended vanilla models. The motion augmentation for each
training sample is implemented with perturbations under Gaussian distribution and σ for each axis
is shown in Figure 1. The inputs are without resizing or other image-based augmented for a clean
and fair comparison, followed by channel normalization to 0.5 mean and variance. The models are
trained with a batch size of 32 and a learning rate of 0.001 for 100 epochs. We remark that the goal
of the model training is to ensure that the base classifiers can perform normally on the test set with-
out overfitting or underfitting and we focus more on the evaluation for robustness analysis, so we did
not fully explore the training potential. The performance of course can be further improved through
tuning the hyper parameters and model architectures in more effective ways. All the experiments
are conducted on NVIDIA A6000 with 48G GPU and 128G RAM.
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Camera motion type Uniform Down Sample
(every k points)

Uniform Down Sample
(density: m)

Translation Z 7 0.0133
Translation X 6 0.01365
Translation Y 7 0.0137

Rotation Z 7 0.0135
Rotation X 6 0.01355
Rotation Y 7 0.0134

Table 2: Hyperparameters for two-stage down sampling to speed up smoothing

Camera Motion Types Smoothed ResNet18 Smoothed ResNet50
Tz , radius [-0.1m, 0.1m] Vanilla / Motion Aug. Vanilla / Motion Aug.

5-perturbed Emp. Robust Acc. 0.817 / 0.833 0.617 / 0.850
100-perturbed Emp. Robust Acc. 0.783 / 0.817 0.567 / 0.825

Tx, radius [-0.05m, 0.05m] Vanilla / Motion Aug. Vanilla / Motion Aug.
5-perturbed Emp. Robust Acc. 0.783 / 0.875 0.675 / 0.825

100-perturbed Emp. Robust Acc. 0.758 / 0.867 0.617 / 0.800
Ty , radius [-0.05m, 0.05m] Vanilla / Motion Aug. Vanilla / Motion Aug.

5-perturbed Emp. Robust Acc. 0.825 / 0.875 0.767 / 0.925
100-perturbed Emp. Robust Acc. 0.792 / 0.842 0.758 / 0.908

Rz , radius [-7◦, 7◦] Vanilla / Motion Aug. Vanilla / Motion Aug.
5-perturbed Emp. Robust Acc. 0.742 / 0.933 0.717 / 0.917

100-perturbed Emp. Robust Acc. 0.717 / 0.892 0.675 / 0.917
Rx, radius [-2.5◦, 2.5◦] Vanilla / Motion Aug. Vanilla / Motion Aug.

5-perturbed Emp. Robust Acc. 0.800 / 0.942 0.742 / 0.933
100-perturbed Emp. Robust Acc. 0.750 / 0.892 0.692 / 0.917

Ry , radius [-2.5◦, 2.5◦] Vanilla / Motion Aug. Vanilla / Motion Aug.
5-perturbed Emp. Robust Acc. 0.875 / 0.925 0.783 / 0.992

100-perturbed Emp. Robust Acc. 0.808 / 0.925 0.742 / 0.983

Table 3: Comparison of performance in terms of 5 and 100 perturbed empirical robust accuracy.

B.3 Evaluation Details

Benign and empirical robust accuracy for base models. To evaluate base models, we only use
the metrics of benign accuracy and empirical robust accuracy because certified accuracy cannot be
obtained without smoothing. The base classifiers are the trained models and we test them directly
on the test set for benign accuracy while we use offline motion perturbed images under uniform
distribution around each test sample to obtain the worst-case empirical robust accuracy.

Benign, empirical robust accuracy for smoothed models. For the smoothing model, since the
smoothing is with Gaussian distribution through online Monte Carlo sampling for each test image,
we adopt online perturbation within a certain radius given the point cloud and camera pose in the
test set to obtain the benign and empirical accuracy for a fair comparison. For the empirical accuracy
through Monte Carlo, we adopt 100 samples to obtain top-2 classes with the confidence of 99% and
batch size of 100 for the smoothed classifier following [3].

Comparison between 5 and 100 perturbed empirical robust accuracy. From Table 3, it can be
seen that grid search based attack 100-perturbed attacks are just a little bit stronger than 5-perturbed
ones, so either can be used to approximate the worst-case adversarial samples although the gradient-
based attack cannot be implemented directly in the camera motion transformation space [4, 5]. Note
that the gap between 5-perturbed and 100-perturbed attacks is less for motion augmented models
compared to undefended vanilla models, showing that motion augmentation can improve empirical
robustness against uniform perturbation.
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Camera Motion Types Vanilla ResNet18 Vanilla ResNet50
Tz , radius [-0.1m, 0.1m] Base / Smoothed Base / Smoothed

Benign Accuracy 0.800 / 0.858 0.708 / 0.675
100-perturbed Emp. Robust Acc. 0.708 / 0.783 0.517 / 0.567

Tx, radius [-0.05m, 0.05m] Base / Smoothed Base / Smoothed
Benign Accuracy 0.817 / 0.825 0.717 / 0.767

100-perturbed Emp. Robust Acc. 0.608 / 0.758 0.467 / 0.617
Ty , radius [-0.05m, 0.05m] Base / Smoothed Base / Smoothed

Benign Accuracy 0.825 / 0.850 0.817 / 0.792
100-perturbed Emp. Robust Acc. 0.675 / 0.792 0.674 / 0.758

Rz , radius [-7◦, 7◦] Base / Smoothed Base / Smoothed
Benign Accuracy 0.800 / 0.817 0.783 / 0.758

100-perturbed Emp. Robust Acc. 0.667 / 0.717 0.558 / 0.675
Rx, radius [-2.5◦, 2.5◦] Base / Smoothed Base / Smoothed

Benign Accuracy 0.867 / 0.842 0.767 / 0.767
100-perturbed Emp. Robust Acc. 0.667 / 0.750 0.467 / 0.692

Ry , radius [-2.5◦, 2.5◦] Base / Smoothed Base / Smoothed
Benign Accuracy 0.917 / 0.892 0.800 / 0.808

100-perturbed Emp. Robust Acc. 0.692 / 0.808 0.600 / 0.742
Table 4: The comparison between base vanilla models and smoothed vanilla models in benign and 100-
perturbed empirical robust accuracy for all camera motions. The higher one between each base and smoothed
model is in bold.

Certified accuracy for smoothed models. For the certification of the smoothed model, we also use
Monte Carlo sampling for smoothing over confidence of 99% using 1000 samples and 100 samples
to obtain the top-1 classes with a batch size of 200. To make the projection more efficient during
smoothing, we use the local dense point cloud map reconstructed from maximum perturbations on
each axis. Specifically, we adopt two-stage down-sampling strategy of uniform down sample and
voxel down sample. The down-sampling hyperparameters are listed in Table 2.

Smoothed v.s. base vanilla model. For the undefended vanilla models, Table 4 presents that
smoothed models have higher empirical robust accuracy and the gap between benign and empirical
robust accuracy becomes less after motion smoothing compared to the base models, showing that
smoothing strategy works not only for well-defended motion augmented models, but also for unde-
fended vanilla models. Compared to main text Table 1, there is more robustness/accuracy trade-off
in rotation for the vanilla models, which implies that motion augmentation as a defense in model
training helps to improve the robustness better against rotational perturbations than translational
perturbations.

B.4 Real-world Robot Experiment Details

The working zone of the pick-place environment is on the table with the size of 1m × 1m. For the
data collection, we first place each object 0.7m away from the robot base and randomly choose
roll angles in [−60◦, 60◦], pitch angles in [35◦, 65◦], yaw angles in [−30◦, 30◦] and radius in
[0.35m, 0.45m], capturing 2500 images along all the random waypoints using the default planning
trajectories for each object. The non-overlapped gap is set between the training set and test set to
choose 19 random poses, which are fixed for 6 objects as 114 test poses in total. The base model
has well-trained over 5 epochs. At each perturbation, the smoothed model is with the 10 samples
from zero-mean Gaussian distribution with variance 0.625cm for all translations and 1.25◦ for all
rotations. Following the metrics in main text Section 4.1, for both the base model and smoothed
model, we adopt 10 uniform samples over [−1.25cm, 1.25cm] and [−2.5◦, 2.5◦] as empirical robust
accuracy. The objects used for the perception model can be seen in Figure 2. Since we do not do
any defense or augmentation in model training, the results in the main text Table 3 are from the
vanilla model. The gap to avoid the overlapping between the test set and training set is 20◦ for roll
angle, 5◦ for pitch angle, 10◦ for yaw angle, and 1.6cm for radius. To make the robot application
more practical, we remark that the smoothing method is used to improve empirical robustness so
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we omit the benign accuracy using the smoothing method, which can be found in main text Table
1 and 4. The qualitative results can be found in Figure 3 to illustrate the smoothing process to im-
prove the perception robustness. The video demo of real-world robot experiment can be found on
https://www.youtube.com/watch?v=iCfRBk3O3CA.

(a) Diamond (b) Oval (c) Quatrefoil

(d) Rectangle (e) Star (f) Trapezoid

Figure 2: All the objects in the real-world robot experiment

Figure 3: Smoothing process to improve robustness against camera motion of Rz (top) and Tz (bottom). The
left four columns are randomized smoothing samples, and the right column is the classification result after
smoothing.

B.5 Limitation and Discussion

One limitation of this work is that our current certification framework is only evaluated on image
classification tasks, although it is fundamental for other robot applications. It can be extended to
regression tasks through discretization and applied to object detection, keypoint detection, depth
estimation, etc. In addition, the robustness certification procedure requires the prior 3D dense point
cloud of the entire environment, which may be hard to obtain sometimes. It also costs many com-
putational resources to obtain the guarantee and can be addressed through differential certifications
[6, 1] as future work. Finally, the current certification framework is built upon the camera sensor,
and it would be interesting to extend the current work to other perception sensors in robotics and
autonomous driving, e.g. 3D LiDAR.
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