GLSO: Grammar-guided Latent Space Optimization

for Sample-efficient Robot Design Automation
Supplementary Material

A Variational Autoencoder Implementation Details

Network Dimensions: In this work, we set the latent vector z € R2® hidden representation of
nodes h; € R*?, and embedding of node attributes Tem, € R*°°. The dimensions of the weights
in the encoder and decoder are set accordingly. The property prediction network is implemented as
a MLP with two hidden layers of size 128, with ReLU activation after each hidden layer. We used
PyTorch [1] for all network implementation.

Training: Our VAE uses a learning rate of 1e-3, which is decayed every 40000 training steps at a
rate of 0.9. We optimize the trainable weights using Adam [2], while applying a gradient clipping of
magnitude 50. We trained the model for 400000 steps with a batch size of 32 to obtain the reported
results. We anneal the weight of KL loss from zero to one during training, which helps ensure that
the encoder does not start by pushing the KL loss to zero, as noted in [3].

B Bayesian Optimization Implementation Details

Our Bayesian Optimization (BO) implementation, using [4], begins with 50 steps of random explo-
ration, which helps diversify the exploration space. Subsequent sampling points are determined by
the Expected Improvement (EI) acquisition function. Every 10 steps, a random point is sampled to
explore. We used an optimization bound of [—3, 3] across all latent dimensions. Our EI acquisition
function has £ = 0.01, which controls the exploration rate. Our Gaussian Process uses a Matern
kernel with v = 2.5. We additionally apply domain reduction, with shrinkage parameter vosc = 0.7,
panning parameter Ypa, = 1.0, zoom parameter 7 = 0.9.

C GRU equations

The following equations are used to calculate the messages passed between nodes in the message
passing graph neural networks in the VAE at each iteration. Notation follows from the main text,
where W and U refer to trainable weights, s,z and r are internal variables, and m refers to the

messages.
Sij= Y Mk (D

keEN(i)/j
zij = o(Wex; + Usy5 4 b%) 2)
Thi = O’(er'i + Urmki + br) 3)
’I?~”Lij = tanh(Wa:,» +U Z Tki @ mki) 4)
keN(i)/j

mi; = (1 = zi5) O sij + 21 O mj ®)



D Latent Space Interpolation

To gain an intuition behind how the latent space maps a combinatorial design space to a continuous
one, we created visualizations of how the designs vary as the latent vector is linearly interpolated
between two points:

The left and right-most designs in each row are obtained from two points in latent space, and the
designs between them are created by linearly interpolating the latent vector at equal intervals, then
decoding those variables.

References

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024—8035. Curran Associates, Inc., 2019.

[2] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating
sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[4] F. Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014. URL https://github.com/fmfn/BayesianOptimization.


https://github.com/fmfn/BayesianOptimization

	Variational Autoencoder Implementation Details
	Bayesian Optimization Implementation Details
	GRU equations
	Latent Space Interpolation

