
Appendix

A. Dual Optimization Derivation

We provide a complete proof of the dual problem derivation as mentioned in section 3.3 in our
manuscript. We will start with a simpler problem without introducing the demonstration weights and
then we will add them to the problem as we go on.

The goal here is to derive the dual problem for calculating the model p(t|s) by choosing the model
that has the maximum entropy with the FEM as a constraint.

max
p(t|s)∈RS×T

H(p(t|s)) ≡ −
∑
s∈S

∑
t∈T

p̃(s)p(t|s) log p(t|s)

s.t. Ep[fi]− Ep̃[fi] = 0 i = 1, . . . , n∑
t∈T

p(t|s)− 1 = 0 ∀ s ∈ S

To derive the dual problem we will use the Lagrange method for convex optimization problems.

Λ(p, λ, µ) ≡ H(p) +

N∑
i=1

λi

(
Ep[fi]− Ep̃[fi]

)
+
∑
s∈S

p̃(s)µs

(∑
t∈T

p(t|s)− 1
)

Where λi, µs are the Lagrangian’s multiplier corresponding to each constraint.

Λ(p, λ, µ) ≡ −
∑
s∈S

p̃(s)
∑
t∈T

p(t | s) log p(t | s)+
N∑
i=1

λi

(
Ep[fi]−Ep̃[fi]

)
+
∑
s∈S

p̃(s)µs

(∑
t∈T

p(t|s)−1
)

(1)

By Differentiating the Lagrangian with respect to primal variables p(s|t) and letting them be zero,
we obtain:

∂Λ

∂p(t|s)
= −

∑
s∈S

p̃(s)
(

1 +
∑
t∈T

log p(t|s)
)

+

N∑
i=1

λi

(∑
s∈S

p̃(s)
∑
t∈T

f(s, t)
)

+
∑
s∈S

p̃(s)µs (2)

−
∑
s∈S

p̃(s)
(

1 +
∑
t∈T

log p(t|s)
)

+

N∑
i=1

λi

(∑
s∈S

p̃(s)
∑
t∈T

f(s, t)
)

+
∑
s∈S

p̃(s)µs = 0 (3)

∑
s∈S

p̃(s)

(
− 1−

∑
t∈T

log p(t|s) +

N∑
i=1

λi

(∑
t∈T

f(s, t)
)

+ µs

)
= 0 (4)

Assuming p̃(s) 6= 0,

log p(t|s) =

N∑
i=1

λi

(
fi(s, t)

)
+ µs − 1 (5)

p(t|s) = exp

(N∑
i=1

λi

(
fi(s, t)

))
· exp

(
µs − 1

)
(6)

1

Since
∑
t∈T

p(t|s) = 1

∑
t∈T

exp

(N∑
i=1

λi

(
fi(s, t)

))
· exp

(
µs − 1

)
= 1 (7)

1∑
t∈T

exp

(N∑
i=1

λi

(
fi(s, t)

)) = exp
(
µs − 1

)
= (zλ(s))−1 (8)

By substituting in Eq. 6 we will get the following Eq. which we are using to predict the next sub-task
distribution based on the current state features.

p∗(t|s) = (zλ(s))−1 · exp

(N∑
i=1

λi

(
fi(s, t)

))
(9)

Finally, the dual problem will be:

−
{

max
λ

Λ(λ) ≡ −
∑
s∈S

p̃(s) log zλ(s) +

N∑
i=1

λi
∑
s∈S

∑
t∈T

p̃(s, t)f(s, t)

}
(10)

Now we will add the demonstration weights w and have our empirical distributions be parameterized
by it.

p̃w(t|s) =
1

M

D∑
d=1

wd · p̃(t|s, d)

p̃w(s) =
1

M

D∑
d=1

wd · p̃(s, d)

(11)

Where D is the total number of demonstrations, and M should be
∑D
d=1 wd. Which is the minimum

number of demonstrations that we can trust in the given set.

We can start presenting the primal formulation by substituting from Eq. 11 to Eq. .

min
w∈RD

max
p(t|s)∈RS×T

H(p(t|s)) =−
∑
s∈S

∑
t∈T

p(t|s) log p(t|s)
D∑
d=1

wd · p̃(s, d)

s. t.

D∑
d=1

wd
∑
s∈S

∑
t∈T

fi(s, t)p̃(s, d)
(
p(t|s)− p̃(t|s, d)

)
= 0, i = 1, . . . , N∑

t∈T
p(t|s)− 1 = 0, ∀s ∈ S

D∑
d=1

wd = M, wd ≥ 0, ∀d ∈ D, wd ≤ 1 ∀d = 1, . . . , D

(12)

2

To solve this problem we will use the Lagrange multiplier as we did before and we can continue from
Eq. 10 by adding the new weight terms from Eq. 11.

min
w

−
{

max
λ

Λ(λ) ≡ − 1

M

D∑
d=1

wd
∑
s∈S

p̃(s, d) log zλ(s) +
1

M

D∑
d=1

wd

N∑
i=1

λi
∑
s∈S

∑
t∈T

p̃(t|s, d)f(s, t)

}

s.t.
D∑
d=1

wd = M

wd ≥ 0 ∀d ∈ D = 1....D

wd ≤ 1 ∀d ∈ D = 1, . . . , D
(13)

By moving the negative sign to inside we will reach our final optimization dual problem.

min
w∈RD,λ∈RN

Λ(λ,w) ≡ − 1

M

D∑
d=1

wd

(
−
∑
s∈S

p̃(s, d) log zλ(s) +

N∑
i=1

λi
∑
s∈S

∑
t∈T

p̃(t|s, d)f(s, t)
)

s. t.

D∑
d=1

wd = M, wd ≥ 0 ∀d ∈ D, wd ≤ 1 ∀d ∈ D

(14)

Where zλ(s) =
∑
t∈T exp

(∑N
i=1 λifi(s, t)

)
is a normalization constant.

We solve the non-convex quadratic problem in Equation14 using the Sequential Quadratic Pro-
gramming (SQP) algorithm 1; The SQP algorithms generalize Newton’s method for constrained
optimization problems. In each iteration, the Hessian of the Lagrangian function is approximated in a
quasi-Newton style. The algorithm then solves the resulting quadratic program and finds the next
iteration using the line search procedure. This algorithm may not converge to the global minimum,
but our experiments find it to perform very well.

B. Visualization of Temporally Ranked Features

We provide a visualization and analysis of some of the features we generated and used in our model.
We contrast some of the highly ranked temporally-grounded features and identified by our novel
ranking system. We investigate two examples from four of the actions in our tea making task:
‘add water’ (Fig. 1), ‘add sugar’ (Fig. 2), ‘stir’ (Fig. 3), and ‘add milk’ (Fig. 4). In all figures
the background video has been depicted in grey scale in order to highlight the location of feature
expression.

(a) Example 1 (b) Example 2

Figure 1: Visual analysis of the features in the context of the ‘Add Water’ action.

Temporally-grounded features captured more specific features related to the task being demonstrated.
In the ‘add water’ task we see that the features capture picking up and returning the pitcher (red) and

1(Implementation:https://www.mathworks.com/help/optim/ug/
constrained-nonlinear-optimization-algorithms.html#bsgppl4)

3

https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#bsgppl4
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#bsgppl4

features for the pouring of the water (blue and yellow). The features in the ‘add sugar’ action captured
those frames where the individual deposited the spoon into the mug (blue) and the reorientation
(green) and return of the spoon (orange). The temporally-grounded features in the ‘stir’ action were
intermittently expressed as the stir action was performed (lime and purple) capturing the cyclical
pattern of the participants hand.

(a) Example 1 (b) Example 2

Figure 2: Visual analysis of the features in the context of the ‘Add Sugar’ action.

(a) Example 1 (b) Example 2

Figure 3: Visual analysis of the features in the context of the ‘Stir’ action.

(a) Example 1 (b) Example 2

Figure 4: Visual analysis of the features in the context of the ‘Add Milk’ action.

C. Dataset Visualization Examples

We provide a visualization for the tea-making task, Fig. 5 Shows the three different sequences we
used in our evaluation. Fig.5.a shows seq 1: Turn on the oven, Add tea bag, Add sugar, Add milk,
Turn off the oven, Add water, Stir. Fig.5.b shows seq 2: Turn on the oven, Add sugar, Add milk, Add
tea bag, Turn off oven, Add water, Stir. Fig.5.c shows seq 3: Turn on the oven, Add sugar, Add milk,
Add tea bag, Turn off oven, Stir.

D. Algorithm and Implementation Details

D.1 Incorrect Demonstration Detection Pseudo Code

In this section, we present a pseudo-code for our framework presented in Algorithm 1. Starting
from step1: by doing the semi-supervised video segmentation, to generate consistent labels without
the need for manual labeling of each frame. Step2: Generate a set of ranked features represents
each video segment. Step3: Calculate the required variables from the given dataset and solve the
optimization equation.

4

(a) Representative frames from a Seq 1 demonstration.

(b) Representative frames from a Seq 2 demonstration.

(c) Representative frames from a Seq 3 demonstration.

Figure 5: Example frames from different types of video demonstrations.

Algorithm 1 Incorrect visual demonstration framework

Step 1: Sub-task segmentation
1: {s, tj}qj=1 . Segment each video in the demonstration set D into segments with labels t , the

number of segments in each video is not fixed.

Step 2: Feature generation
2: for each video segment do
3: s = {fn}Nn=1, {tj}qj=1 . From each video segment an N ranked features are extracted and

paired with the next sub-tasks label based on the sequence of each demonstration t.

Step 3: Calculate the demonstrations weighs
4: for each video d do
5: for each video segment s do
6: count how many times s appears in each video d to calculate p̃(s, d).
7: for each task t do
8: count how many times the next task t will appear given s, d to calculate p̃(t|s, d)
9: for each feature in the feature set f do

10: build the feature matrix with shape (f × s× t)
11: Solve the optimization function in Equation 14 . Matlab toolbox has been used to solve this

problem 1

12: Using the set of generated weights w determine the class of the demonstrations using any
clustering algorithms.

5

D.2 Behavioral Cloning (BC, BC-RNN, R-MAXENT, DEMO-DICE)

Behavioral Cloning (BC) is a one of main method for learning a policy from a set of demonstrations.
It trains a policy πx(s) to clone the actions in the dataset via the objective:

argmin
x

E(s,a)∼D||πx(s)− a||2 (15)

BC-RNN is a strong variant of BC that uses a Recurrent Neural Network (RNN) as the policy network,
which allows the policy to model temporal dependencies in the data through the recurrent hidden
state. The network is trained on length-T temporal sequences of data (st, at, ..., st+T , at+T). The
network predicts the sequence of actions using the sequence of states as input. At test-time, the RNN
policy network is unrolled one-step at a time, at, ht+1 = πx(st, ht) where h is the RNN hidden state.
The hidden state is refreshed every T steps. We levered the code code available for both of these
approaches here 2.

R-MAXENT leverage the incorrect demonstrations for policy learning but assign poor weights to
them in the learning process. We leveraged the available code here 3.

DEMO-DICE implementation is available by the author here 4.

E. More Experimental Results

E.1 Clustering of the Generated Weights Results

We are using a k-means algorithm [43] to cluster the weights and the threshold is chosen as the middle
point between the resulting means. The number of clusters is preset to 2 in case of optimal/incorrect
demonstrations and 3 in case optimal, sub-optimal, and incorrect videos. We did run two other
clustering algorithms and all came with the same thresholds (Gaussian mixture model [43] and
Mini-Batch K-Means [44]). Table 1 presents the results for calculating the threshold for one of the
experiments where we have 2 type of demonstrations – correct and incorrect.

Algorithm Cluster 1 mean Cluster 2 mean Threshold

KNN 0.28 0.8 0.52
Gaussian mixture model 0.27 0.8 0.52

Mini-Batch K-Means 0.28 0.8 0.52

Table 1: Clustering of weights generated by the proposed framework
E.2 Robustness with respect to Video Segmentation Performance

To study the effect of the video segmentation accuracy over the performance of our framework, we
ran our framework with video segmentation algorithms [38]. We investigated three data points: 100%
accuracy achieved through manual video segmentation, 83% accuracy through the best performing
segmentation algorithm in [38], and 75 % accuracy through the same algorithm in [38] but with less
training. Table 2 shows that the accuracy of the proposed framework saturates with a reasonably good
video segmentation performance (i.e. 83% and 100%) but drops moderately with the performance of
the video segmentation algorithm.

Segmentation accuracy Overall Framework accuracy

100% 90 %
83% 90%
75% 85%

Table 2: Robustness with respect to the performance of the video segmentation algorithm

2https://robomimic.github.io/study/
3https://github.com/mostafa-hussein/max-ent
4https://github.com/KAIST-AILab/imitation-dice

6

https://robomimic.github.io/study/
https://github.com/mostafa-hussein/max-ent
https://github.com/KAIST-AILab/imitation-dice

