A Contributions
A.1 By Type

e Designed and built distributed robot learning infrastructure: Michael Ahn, Anthony
Brohan, Noah Brown, Yevgen Chebotar, Byron David, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Alex Irpan, Eric Jang,
Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Yao Lu, Peter Pastor,
Kanishka Rao, Nicolas Sievers, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan
Yan.

e Designed, implemented, or trained the underlying manipulation policies: Yevgen
Chebotar, Keerthana Gopalakrishnan, Karol Hausman, Julian Ibarz, Alex Irpan, Eric Jang,
Nikhil Joshi, Ryan Julian, Kuang-Huei Lee, Yao Lu, Kanishka Rao, and Ted Xiao.

e Designed or implemented the data generation and curation or collected data: Noah
Brown, Omar Cortes, Jasmine Hsu, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle
Jeffrey, Linda Luu, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes,
Pierre Sermanet, Clayton Tan, and Sichun Xu.

e Designed or implemented SayCan: Karol Hausman, Brian Ichter, Sergey Levine, Alexan-
der Toshev, and Fei Xia.

e Managed or advised on the project: Chelsea Finn, Karol Hausman, Eric Jang, Sally
Jesmonth, Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Alexander Toshev, and
Vincent Vanhoucke.

e Ran evaluations or experiments: Noah Brown, Omar Cortes, Brian Ichter, Rosario Jau-
regui Ruano, Kyle Jeffrey, Linda Luu, Jornell Quiambao, Jarek Rettinghouse, Diego Reyes,
Clayton Tan, and Fei Xia.

e Scaled simulation infrastructure: Nikhil J Joshi, Yao Lu, Kanishka Rao, and Ted Xiao.

o Wrote the paper: Chelsea Finn, Karol Hausman, Brian Ichter, Alex Irpan, Sergey Levine,
Fei Xia, and Ted Xiao.

A.2 By Person

Michael Ahn developed the deployment system that enabled the ability to scale up data collection
on real robots.

Anthony Brohan implemented the logging system for the project and designed and implemented
the data labeling pipelines.

Noah Brown led and coordinated the real-robot operations including data collection with teleoper-
ators, evaluations and the real-world setup.

Yevgen Chebotar designed and implemented multiple offline RL methods allowing the manipula-
tion policies to process data coming from different sources.

Omar Cortes collected data on the robots and ran and supervised real-world evaluations.

Byron David developed simulation assets and performed system identification.

Chelsea Finn advised on the project, helped set the research direction and wrote parts of the paper.
Keerthana Gopalakrishnan provided multiple infrastructure contributions that allowed for scal-
able learning of manipulation policies.

Karol Hausman co-led the project as well as developed SayCan, helped set the research direction,
trained the underlying manipulation policies, and wrote the paper.

Alex Herzog developed the teleoperation tools and implemented multiple infrastructure tools that
allowed for continuous robot operation.

Daniel Ho helped develop sim-to-real pipelines for manipulation policies.

Jasmine Hsu provided logging and monitoring infrastructure tools as well as data labeling pipelines.
Julian Ibarz provided multiple contributions that enabled scaling learning algorithms for manipu-
lation policies, and helped set the research direction.

Brian Ichter initiated and led the SayCan algorithm, combined the manipulation and navigation
skills, ran experiments for the paper, and wrote the paper.

Alex Irpan set up and led the autonomous data collection effort as well as verified the data collected
by the robots, and wrote parts of the paper.

Eric Jang helped set the research and team direction, managed the data for learning, developed the
behavioral cloning manipulation policies, and wrote parts of the paper.

14

Rosario Jauregui Ruano collected data on the robots and ran and supervised real-world evaluations.
Kyle Jeffrey collected data on the robots and ran and supervised real-world evaluations.

Sally Jesmonth was the program manager for the project.

Nikhil J Joshi developed a number of simulation and infrastructure tools that allowed to scale up
simulation training.

Ryan Julian developed multi-modal network architectures and trained manipulation policies.
Dmitry Kalashnikov contributed infrastructure pieces that enabled training from logged data.
Yuheng Kuang implemented the logging system for the project and designed and implemented the
data labeling pipelines

Kuang-Huei Lee made improvements to training algorithms for manipulation policies.

Sergey Levine advised on the project, helped set the research direction, developed SayCan, and
wrote parts of the paper.

Yao Lu led and designed the robot learning infrastructure for the project providing most of the tools
and improving manipulation policies.

Linda Luu ran multiple evaluations, collected data and helped establish real-robot operations.
Carolina Parada advised on the project, managed the team, helped write the paper, and helped set
the research direction.

Peter Pastor provided infrastructure tools that allowed for continuous robot operations.

Jornell Quiambao collected data on the robots and ran and supervised real-world evaluations.
Kanishka Rao co-led the project, managed the team, helped set the research direction and con-
tributed to training manipulation policies.

Jarek Rettinghouse collected data on the robots and ran and supervised real-world evaluations.
Diego Reyes collected data on the robots and ran and supervised real-world evaluations.

Pierre Sermanet set up the crowd compute rating pipeline.

Nicolas Sievers provided simulation assets and environments used for simulation training.
Clayton Tan collected data on the robots and ran and supervised real-world evaluations and helped
establish real-robot operations.

Alexander Toshev advised on the project, developed SayCan, helped write the paper, and helped
set research direction.

Vincent Vanhoucke advised on the project, managed the team, and helped write the paper.

Fei Xia developed, implemented, and led on-robot SayCan, ran the experiments for the paper, cre-
ated the demos, and wrote the paper.

Ted Xiao led the scaling of manipulation skills, designed and developed learning from simulation
for manipulation skills, and developed multi-modal network architectures.

Peng Xu was the engineering lead for integrating manipulation and navigation and developed the
underlying infrastructure for SayCan.

Sichun Xu developed remote teleoperation tools that allowed scaling up data collection in simula-
tion.

Mengyuan Yan implemented infrastructure and learning tools that allowed for learning manipula-
tion policies from different data sources.

A.3 Corresponding Emails:

{ichter,xiafei,karolhausman}@google.com

B Background

Large Language Models. Language models seek to model the probability p(WW) of a text
W = {wg, w1, ws,...,w,}, a sequence of strings w. This is generally done through factorizing
the probability via the chain rule to be p(W) = II7_qp(w;|w<;), such that each successive string
is predicted from the previous. Recent breakthroughs initiated by neural network-based Attention
architectures [82] have enabled efficient scaling of so-called Large Language Models (LLMs). Such
models include Transformers [82], BERT [19], TS [83], GPT-3 [2], Gopher [84], LAMDA [85],
FLAN [86], and PaLM [11], each showing increasingly large capacity (billions of parameters and
terabytes of text) and subsequent ability to generalize across tasks.

In this work, we utilize the vast semantic knowledge contained in LLMs to determine useful tasks
for solving high-level instructions.

Value functions and RL. Our goal is to be able to accurately predict whether a skill (given by a
language command) is feasible at a current state. We use temporal-difference-based (TD) reinforce-

15

ment learning to accomplish this goal. In particular, we define a Markov decision process (MDP)
M = (S, A, P,R,v), where S and A are state and action spaces, P : S x A x S — R, isa
state-transition probability function, R : S x A — R is a reward function and + is a discount factor.
The goal of TD methods is to learn state or state-action value functions (Q-function) Q™ (s, a), which
represents the discounted sum of rewards when starting from state s and action a, followed by the ac-
tions produced by the policy 7, i.e. Q™ (s,a) = Eqr(als) s R(5t,a¢). The Q-function, Q™ (s, a)
can be learned via approximate dynamic programming approaches that optimize the following loss:
L1rp(0) = Es ., [R(5,0) + VEa-~xQF (s',a*) — QF (s,a)], where D is the dataset of states
and actions and 6 are the parameters of the Q-function.

In this work, we utilize TD-based methods to learn said value function that is additionally condi-
tioned on the language command and utilize those to determine whether a given command is feasible
from the given state. It is worth noting that in the sparse reward case, where the agent receives the
reward of 1.0 at the end of the episode if it was successful and 0.0 otherwise, the value function
trained via RL corresponds to an affordance function [87] that specifies whether a skill is possible
in a given state. We leverage that intuition in our setup and express affordances via value functions
of sparse reward tasks.

C RL and BC Policies

C.1 RL and BC Policy Architecture

The RL models use an architecture similar to MT-Opt [6], with slight changes to support natural
language inputs (see Fig. 6 for the network diagram). The camera image is first processed by 7 con-
volutional layers. The language instruction is embedded by the LLM, then concatenated with the
robot action and non-image parts of the state, such as the gripper height. To support asynchronous
control, inference occurs while the robot is still moving from the previous action. The model is given
how much of the previous action is left to execute [88]. The conditioning input goes through FC lay-
ers, then tiled spatially and added to the conv. volume, before going through 11 more convolutional
layers. The output is gated through a sigmoid, so the Q-value is always in [0, 1].

The BC models use an architecture similar to BC-Z [5] (see Fig. 7 for the network diagram). The
language instruction is embedded by a universal sentence encoder [8], then used to FILM condition
a Resnet-18 based architecture. Unlike the RL model, we do not provide the previous action or
gripper height, since this was not necessary to learn the policy. Multiple FC layers are applied to the
final visual features, to output each action component (arm position, arm orientation, gripper, and
the termination action).

C.2 RL and BC Policy Training

RL training. In addition to using demonstrations in the BC setup, we also learn language-
conditioned value functions with RL. For this purpose, we complement our real robot fleet with a
simulated version of the skills and environment. To reduce the simulation-to-real gap we transform
robot images via RetinaGAN [9] to look more realistic while preserving genera object structure. In
order to learn a language-conditioned RL policy, we utilize MT-Opt [6] in the Everyday Robots sim-
ulator using said simulation-to-real transfer. We bootstrap the performance of simulation policies by
utilizing simulation demonstrations to provide initial successes, and then continuously improve the
RL performance with online data collection in simulation. Standard image augmentations (random
brightness and contrast) as well as random cropping were applied. The 640 x 512 input image was
padded by 100 pixels left-right and 40 pixels top-down, then cropped back down to a 640 x 512
image, so as to allow for random spatial shifts without limiting the field of view. We use a network
architecture similar to MT-Opt (shown in Fig. 6).

The RL model is trained using 16 TPUv3 chips and for about 100 hours, as well as a pool of
3000 CPU workers to collect episodes and another 3000 CPU workers to compute target Q-values.
Computing target Q-values outside the TPU allows the TPU to be used solely for computing gradient
updates. Episode rewards are sparse and always 0 or 1, so the Q-function is updated using a log loss.
Models were trained using prioritized experience replay [89], where episode priority was tuned to
encourage replay buffer training data for each skill to be close to 50% success. Episodes were
sampled proportionally to their priority, defined as 1 + 10 - |p — 0.5|, where p is the average success
rate of episodes in the replay buffer.

16

b x = b
(-] (1] (-] (-]
-] - -] -]
[} o [} [}
8 2 2 8
x > x »
o (-] w N
o (2] (2]
g z ¢ = g z §
= & = & = g =2 =2 2
) o v oy <
—2-§-3-3—>@®>2%-§-%3-2-3
o = o = A w = w = &
S 8 98 ORI
® = g =

S (640, 512, 3)

Conditional Q-Function

Cartesian Vector —3» Qg (S, a, fﬂ—)

Gripper Rotation ==
Gripper Closure =3 *
Terminate Episode =
Log Loss

argarlnax Qg(sl, a/’ fﬁ)

Conditional Target Q-Function

lr Skill Description —>>

(952)04
g
(v9l)o=|
(V9'l‘L);dW9°U

Vector To Go —>>
Rotation To Go =——»
S Closure To Go =

Gripper Height =—3»

Figure 6: Network architecture in RL policy

3 3 ¢
— N =N = 3 > Cartesian Vector
(2 [o
/)) =
” g S N
©
e B
o
: PN\ 3 3 ¢
o = _—N—_-N - 3 =3 Gripper Rotation
a oa B
s & ~
S (640,512, 3)
(k)
3 3 ¢
—_—N—-N - 'g =3 Gripper Closure
. g & &
= g £ a
=
skill Description Q
(USE Embedding) 7 3 8 8 &
= — N = N = 3 = Terminate Episode
° wn wn o
3 g & =

Figure 7: Network architecture in BC policy

BC training. We use 68000 teleoperated demonstrations that were collected over the course of 11
months using a fleet of 10 robots. The operators use VR headset controllers to track the motion of
their hand, which is then mapped onto the robot’s end-effector pose. The operators can also use a
joystick to move the robot’s base. We expand the demonstration dataset with 276000 autonomous
episodes of learned policies which are later success-filtered and included in BC training, resulting
in an additional 12000 successful episodes. To additionally process the data, we also ask the raters
to mark the episodes as unsafe (i.e., if the robot collided with the environment), undesirable (i.e., if
the robot perturbed objects that were not relevant to the skill) or infeasible (i.e., if the skill cannot be
done or is already accomplished). If any of these conditions are met, the episode is excluded from
training.

To learn language-conditioned BC policies at scale in the real world, we build on top of BC-Z [5]
and use a similar policy-network architecture (shown in Fig. 7). It is trained with an MSE loss

17

for the continuous action components, and a cross-entropy loss for the discrete action components.
Each action component was weighted evenly. Standard image augmentations (random brightness
and contrast) as well as random cropping were used. The 640 x 512 input image was padded by
100 pixels left-right and 40 pixels top-down, then cropped back down to a 640 x 512 image, so as
to allow for random spatial shifts without limiting the field of view. For faster iteration speeds with
negligible training performance reduction, image inputs were down sampled to half-size (256 x 320
images). Affordance value functions were trained with full-size images, since half-size images did
not work as well when learning Q(s, a, ¢). The BC model is trained using 16 TPUv3 chips and
trained for about 27 hours.

C.3 RL and BC Policy Evaluations

In order to obtain the best possible manipulation capabilities for use in SayCan, we use a separate
evaluation protocol for iterating on the RL and BC policies in the Mock Office Kitchen stations.
Evaluations are divided by skill (pick up, knock over, place upright, open/close drawers, move object
close to another one), and within each skill, 18-48 skills are sampled from a predetermined set of
three objects. Object positions are randomized on each episode, with one or two objects serving as
a distractor.

The episode ends when 50 actions have been taken or the policy samples a terminate action. A hu-
man operator supervises multiple robots performing evaluation and performs scene resets as needed,
and records each episode as a success or failure. Models whose per-skill performance outperforms
prior models are “’graduated” to the same evaluation protocol in the real kitchen, and then integrated
into SayCan. We found that despite the domain shift from Mock Office Kitchen stations to the actual
kitchen counter and drawers, higher success rates on mock stations usually corresponded to higher
success rates in the real kitchen setting.

Figure 8 shows the development of the manipulation skills over time. It reports the per-skill success
rate, the average success rate across all skills, and the number of instructions the policy was trained
on. Over the course of the project, we increased the number of skills evaluated, from 1 instruction
in April 2021 to hundreds of instructions at time of publication over the course of 366 real-world
model evaluations.

Number of Skills and Skill-Family Success Rates
Number of Tasks == Pick == Move Knock == Upright == Drawer == Go To == Skill Mean

100% 551 551 1000

75%] 7< 4 /

50%

100

Success Rate
Number of Skills

10
25%
0 y,
/ 1
Jan-Mar Apr-Jun Jul Aug Sep Oct Nov-Dec Mar

0%

Figure 8: Per-skill evaluation performance of the best policies and number of skills over the duration of the
project. The performance as well as the number of skills that the robots are able to handle grow over time due
to the continuous data collection efforts as well as improving the policy training algorithms.

D SayCan Details and Parameters

D.1 SayCan Details

Figure 9 shows scoring approach used and prompt engineering for the LLM side of SayCan. Fig-
ure 10 shows how robotic affordances are computed with value functions and real value function
computations at different states. These two components are combined to form SayCan, as detailed
in Algorithm 1 and in Figure 11.

18

Find an apple -6

B v o v o o~ .
£ ; L Find a coke =30/ would: 1. pick
8 i 1. find a coffee cup, 2. pick up the coffee cup, 3. goto | arge Find a sponge =30 up the apple, 2
=) i counter, 4. put down the coffee cup, 5. done. H Language —
g L Model Pfck up the apple 4 —0— um
S |
o RS

i poympepegmpepapapeyepepeepeyapepeyepeyepep ey — =y Place the apple -5
5 How would you put an apple on the Place the coke -30
‘g table? Place the sponge -30
3 Go to the table -10
< I would: 1.

Go to the counter -20

Figure 9: A scoring language model is queried with a prompt-engineered context of examples and the high-
level instruction to execute and outputs the probability of each skill being selected. To iteratively plan the next
steps, the selected skill is added to the natural language query and the language model is queried again.

7

D Find an apple
/ (\ o Pick up the redbull can

ind a coke

Pick up the redbull can
Pick up the apple Pick up the apple
Pick up the water bottle Pick up the water bottle

) Place the apple Pick up the bag of chips. Pick up the bag of chips

lace the sponge. Pick up the coke can
\) Go to the table
080 -0 Go o the counter

() (b) (©

Pick up the coke can

0.00 0.25 0.50 0.75 1.00 [0.00 025 050 0.75 1.00
Values

Figure 10: A value function module (a) is queried to form a value function space of action primitives based
on the current observation. Visualizing “pick” value functions, in (b) “Pick up the red bull can” and “Pick up
the apple” have high values because both objects are in the scene, while in (c) the robot is navigating an empty
space, and thus none of the pick up actions receive high values.

D.2 SKills, Policies, and Affordance Functions

We also note a few practical considerations for setting up our affordance functions and policies.
The flexibility of our approach allows us to mix and match policies and affordances from different
methods. For the pick manipulation skills we use a single multi-task, language-conditioned policy,
for the place manipulation skills we use a scripted policy with an affordance based on the gripper
state, and for navigation policies we use a planning-based approach which is aware of the locations
where specific objects can be found and a distance measure. In order to avoid a situation where a
skill is chosen but has already been performed or will have no effect, we set a cap for the affordances
indicating that the skill has been completed and the reward received.

SayCan is capable of incorporating many different policies and affordance functions through its
probability interface. Though in principle each type of skill has been trained with the pipeline
described in Appendix C, to the success rates seen in Figure 8, we wish to show the generality of
SayCan to different policies and affordance functions as well as the robustness of other functions
(e.g. distance for navigation). Furthermore, some skills (such as the manipulation skill “move

Algorithm 1 SayCan

Given: A high level instruction 4, state sg, and a set of skills II and their language descriptions ¢y
:n=0,71=0
2: while ¢, _, # “done” do
3: C=10
for r € Il and /. € /17 do
PEIM = (i by ooy) > Evaluate scoring of LLM

paffordance — (¢ |5, £) > Evaluate affordance function

combined __ affordance, ,LLM
pﬂ' - p7r p7r

C=CU pfrombined
end for
10: Ty, = argmax, .y C
11: Execute 7,,(s,,) in the environment, updating state s,,41
12: n=n-+1
13: end while

R A A

19

Instruction Relevance with LLMs Combined Skill Affordances with Value Functions

i Prompt Examples ! -6 Find an apple 0.6
i ! -30 Find a coke 0.6
-30 Find a sponge 0.6
How would you put _
an apple on the -4 Pick up the apple 0.2
table? -30 Pick up the coke 0.2
| would: 1.
-5 Place the apple 0.1
14
-30 Place the coke 0.1
-10 Go to the table 0.8 E Val;:le
unctons
LLM -20 Go to the counter 0.8

| would: 1. Find an apple, 2.

1
QWLM >i

Figure 11: (A copy of Figure 2 here for clarity) Given a high-level instruction, SayCan combines probabilities
from a language model (representing the probability that a skill is useful for the instruction) with the probabili-
ties from a value function (representing the probability of successfully executing said skill) to select the skill to
perform. This emits a skill that is both possible and useful. The process is repeated by appending the selected
skill to the robot response and querying the models again, until the output step is to terminate.

object near object” and “knock object over”) are not naturally part of long-horizon tasks and
thus we do not utilize them. Other skills, such as drawer opening, were not consistent enough for
long-horizon planning and thus unused. However, we note that as skills become performant or as
new skills are learned, it is straightforward to incorporate these skills by adding them as options for
LLM scoring and as examples in the prompt. We use the following for each skill family:

e Pick. For pick we use the learned policies in Appendix C and Section 3 with actions from
BC and value functions from RL trained on the same skill. In natural language these are
specified as “pick up the object”.

e Go to. Since the focus of this work is mainly on planning, we assume the location of
objects are known. Thus any navigation skill maps to the coordinate of the object with a
classical planning-based navigation stack. In natural language these are specified as “go to
location” and “find object”.

e Place. Though our manipulation policies have a “place upright” skill, this skill only applies
to objects that have a canonical upright direction, e.g., a water bottle but not a bag of chips.
One could also train a universal “place” command, but our current policies are trained
in a setup-free environment and thus are not amenable to an initial pick. Thus to have a
consistent place policy across all objects we use a classical motion planning policy. We use
Cartesian space motion planning to plan a path from pre-grasp pose shown in Figure 3 to
a gripper release pose. The robot executes that path until the gripper is in contact with a
supporting surface, and then the gripper opens and releases the object. In natural language
these are specified as “put down the object”.

Each skill is thus an explicit text command performed by a low-level policy for that skill. For
object above, we use the objects shown in Figure 3 placed in random configurations at locations
throughout the scene (e.g., coke can, water bottle, jalapeno chips, apple, sponge, etc.). These objects
can be placed in random configurations at locations throughout the scene. For location above, we
consider several named locations with known positions shown in Figure 3 (e.g., table, trash can,
etc.). This results in skills such as the following:

20

LLINNT3 LLINT3 CEIT3

e “Pick up the coke”, “pick up the 7up”, “pick up the apple”, “pick up the sponge”, etc. Note
that each is d1fferent for different objects and this distinction is learned through demonstra-
tion data.

LEINT3

e “Go to the trash can”, “go to the table”, etc.

e “Place the coke”, “place the 7up”, etc.

Recall that we wish to find the affordance function p(c;|s, £,), which indicates the probability of
c-ompleting the skill with description £, successfully from state s. Our learned policies produce a Q-
function, Q™ (s, a). Given Q™ (s, a) with action a and state s, value v(s) = max, Q@™ (s, a) is found
through optimization via the cross entropy method, 51m11ar to MT-Opt. For brevity below we refer to
the value functions by their skill-text description £, as v~ and the affordance function as p“‘ﬁ"‘fd“"“Ce

Furthermore, SayCan enforces logic that if a skill that has already been completed and the reward
received (e.g., navigating to the table the robot is already in front of) then it should not be performed.

Due to artifacts of training and each implementation, the value functions require calibration to be
directly applied as a probability. The parameters used for calibration are determined empirically. In
practice we found this calibration fairly robust and straightforward and that the combination of the
LLM and affordance function complement each other to reduce errors. For picking for instance, we
see when an object is not present or when the robot is navigating, we find a consistent minimum
value, while if the object is present the value rises quickly when the object is able to be picked, and
peak consistently when the object is picked. For navigation, we set this value so that it is calibrated
to the size of the scene.

e Pick. We find the trained value functions generally have a minimum value for when a skill
is not possible and a maximum when the skill is successful and thus we normalize the value
function to get a affordance function with

,Upick _ Uplck

affordance __ min pick __ ple
ppick = Cl&mp(m, 0 1) where VUmax — 0. 5, mln =0.2.
max — Ympin

e Go to. The affordance function of go to skills are based on the distance d (in meters) to the
location. We use

goto __ dgoto
pgffggdmce = Clamp(idg;fg 0, 1), where d2°° = 100, d%°% = 0.

dgoto’ max » “'min
max ~
min

e Place. We assume place is always possible, p;ﬁ‘fcdmce = 1.0, since we find language is
sufficient to understand place is only possible after a pick. In the future work having an

affordance function module for place could further improve the performance of SayCan.

o Terminate. We give terminate a small affordance value, to make sure the planning process

terminates when there is no feasible skills to choose from. pafferdance — g 1,

D.3 LLM Size

SayCan is able to improve with improved language models. The LLM used herein was PaLM [11],
a 540B parameter model. In this section we ablate over 8B, 62B, and 540B parameter models
as well as the 137B parameter FLAN model [86] which is finetuned on a “instruction answering”
dataset. Table 3 shows each model on the generative problem. Table 4 shows PaLM 540B and
FLAN on robot. We find that generally larger models perform better, though the difference between
the 62B and 540B model is small. Results in other works, such as Chain of Thought Prompting [20],
indicate this difference may be more pronounced on more challenging problems. We also find that
PalLM outperforms FLAN. Though FLAN was finetuned on instruction answering, the broader and
improved dataset for PALM may make up for this difference in training.

D.4 LLM Prompt

The LLM uses prompt engineering and a strict response structure to score skills. But, as SayCan
as a whole requires affordances from a world embodiment, it is not straightforward to optimize this
structure and tune parameters quickly. Thus we built a language-based simulator which, given a
query and a solution sequence of skills, outputs affordances consistent with the query and solution.
It also generates consistent distractor affordances to ensure robustness. The simulator then verifies
that SayCan recovers the correct solution and tests how confident SayCan is in the correct solutions.

21

] Family Num [PaLM 540B [11] PaLM 62B PaLM 8B FLAN 137B [86] |

NL Single 15 87% 73% 20% 40%
NL Nouns 15 53% 47% 20% 40%
NL Verbs 15 93% 100% 60% 87%
Structured 15 100% 100% 67% T3%
Embodiment 11 36% 27% 27% 0%
Crowd Sourced 15 80% 73% 47% 47%
Long-Horizon 15 60% 73% 20% 0%
Total 101 74% 72% 38% 43%

Table 3: Ablations over the size of the LLM. Compared only with the generative outputs (no value function)
with USE embeddings [8].

PaLM[11] [FLAN|[86]
| Family Num | Plan Execute | Plan Execute

NL Single 15 100% 100% 67% 67%
NL Nouns 15 67% 47% 60% 53%
NL Verbs 15 100% 93% 80% 67%
Structured 15 93% 87% 100% 87%
Embodiment 11 64% 55% 64% 55%
Crowd Sourced 15 87% 87% 73% 67%
Long-Horizon 15 73% 47% 47% 33%
Total 101 84% 74% 70% 61%

Table 4: Success rates of instructions by family. SayCan achieves a planning success rate of 84% and execution
success rate of 74% with PaLM and FLAN achieves 70% planning and 61% success. SayCan scales and
improves with improved LLM:s.

In Table 5 we test the effect of the number of examples in the prompt on the planning success rate
in the language-based simulator (over 50 demonstrative instructions). We show a success rate with
and without requiring the plan to terminate; without examples we found the LLM was unlikely
to issue a “done” phase. With no examples SayCan is able to successfully plan 54% without the
done condition, but only 10% with the done condition. Though it makes mistakes, clearly some
information is already imbued within the language model. It is able to correctly solve “Can I have a
redbull please?” and “Move the chips bag from the table to the counter.”. With only one example the
LLM quickly improves in both planning rates, though still fails to terminate the plan occasionally.
After only four examples the LLM is performant, planning 82% of the queries correctly, though the
remaining errors are largely within a single instruction family: Long-Horizon. Finally, the prompt
used in this work, Listing 1, involved 17 examples and recovered 88% of the solutions correctly.

We note here briefly a few lessons learned in prompt engineering and structuring the final prompt.
Providing explicit numbers between steps (e.g., 1., 2., instead of combining skills with “and then”
or other phrases) improved performance, as did breaking each step into a separate line (e.g. adding
a “\n” between steps). Examples which overly include objects used in the actual planning tend to
bias results to those objects (e.g., if every example is about apples then the apple scoring will be off
in planning). Phrasing of the natural language names of skills and objects is important due to the
auto-regressive nature of the LLM scoring — skills and objects should be naturally named and errors
such as misspellings or mismatches in “a” vs “an” can be problematic. Notably, since user generated
instructions are taken as given such fragility is not issues for the input, allowing a robustness to user
queries. For our language model, PaLM [11], structuring the interaction as dialog was both more
natural and performant. Although dialog is used as prompt, the model generalized to imperative
sentences at deployment time.

22

| Num Examples | Require Termination | No Termination Required |

0 10% 52%
1 64% 74%
2 68% 76%
4 82% 84%
8 80% 80%
Full Prompt (17) 88% 88%

Table 5: Number of prompt engineering examples versus planning rate (when requiring the plan to know when
to terminate, e.g., issue a “done” command, or not).

Listing 1: Prompt in SayCan.

Robot: Hi there, I’m a robot operating in an office kitchen.

Robot: You can ask me to do various tasks and I’1l tell you the sequence of actions I would do to
accomplish your task.

Human: How would you hold the snickers?

Robot: 1. pick up the snickers, 2. done.

Human: How would you put the trailmix here?

Robot: 1. put down the trailmix, 2. domne.

Human: How would you put a water bottle and an oatmeal next to the microwave?

Robot: 1. find a water bottle, 2. pick up the water bottle, 3. go to microwave, 4. put down the water
bottle, 5. find an oatmeal, 6. pick up the oatmeal, 7. go to the microwave, 8. put down the oatmeal,
9. done.

Human: How would you put a grapefruit from the table into the bowl?

Robot: 1. find a grapefruit, 2. pick up the grapefruit, 3. go to the bowl, 4. put down the grapefruit, 5.
done.

Human: How would you get a sponge from the counter and put it in the sink?

Robot: 1. find a sponge, 2. pick up the sponge, 3. go to the sink, 4. put down the sponge, 5. done.

Human: How would you move the water bottle from the table to the counter?

Robot: 1. find a water bottle, 2. pick up the water bottle, 3. go to the counter, 4. put down the water
bottle, 5. done.

Human: How would you bring me some snacks?

Robot: 1. find a twix, 2. pick up the twix, 3. bring it to you, 4. put down the twix, 5. find an dried
fruit, 6. pick up the dried fruit, 7. bring it to you, 8. put down the dried fruit, 9. done.

Human: How would you bring me an orange?

Robot: 1. find an orange, 2. pick up the orange, 3. bring it to you, 4. put down the orange, 5. done.

Human: How would you deliver a can of coke to me?

Robot: 1. find a coke can, 2. pick up the coke can, 3. bring it to you, 4. put down the coke can, 5. done.

Human: I finished my drink, can you throw it away and bring me a mountain dew?

Robot: 1. find a sprite can, 2. pick up the sprite can, 3. go to the trash can, 4. put down the sprite can
, 5. find a mountain dew can, 6. pick up the mountain dew can, 7. bring it to you, 8. put down the
mountain dew can, 9. done.

Human: How would you let go of the banana?

Robot: 1. put down the banana, 2. done.

Human: How would you put the grapes in the bowl and then move the cheese to the table?

Robot: 1. find the grapes, 2. pick up the grapes, 3. go to the bowl, 4. put down the grapes, 5. pick up
the cheese, 6. go to the table, 7. put down the cheese, 8. tell you I’m done.

Human: How would you pick up the peanuts?

Robot: 1. pick up the peanuts, 2. done.

Human: How would you bring me the peanuts?

Robot: 1. pick up the peanuts, 2. bring it to you, 3. put down the peanuts, 4. done.

Human: How would you throw away a coffee cup?

Robot: 1. find a coffee cup, 2. pick up the coffee cup, 3. go to trash can, 4. put down the coffee cup, 5.

done.

Human: How would you place a knife and a banana to the table?

Robot: 1. find a knife, 2. pick up the knife, 3. go to the table, 4. put down the knife, 5. find a banana,

6. pick up the banana, 7. go to the table, 8. put down the banana, 9. done.

E Experiments
E.1 Tasks

Below we include every instruction run, which environment it was run in, and its planning and
execution success rate. Table 5 shows all instructions as broken down by instruction family, listed
below and initially defined in Section 4 Table 1.

e Natural Language (NL) Single Primitive. Given a natural language command corre-
sponding to performing a single primitive, can SayCan recover that primitive skill and
terminate?

e NL Noun. Given a natural language query that replaces a noun (typically an object or
location) with a synonym, can SayCan execute the appropriate sequence?

23

E.2

e NL Verbs. Given a natural language query that replaces a verb (typically an action) with a
synonym, can SayCan execute an appropriate sequence?

e Structured Language. Given a structure language query that mirrors the NL Verbs and
spells out the sequence of commands, how well can SayCan plan compared to NL Verbs?
This acts as an ablation to see the performance loss of understanding a natural language
query over an explicit solution.

¢ Embodiment. Given a query with different environment and robot states, can SayCan still
execute at a high rate? This tests the performance of SayCan’s affordance model and the
LLM’s ability to reason within it.

e Crowd-Sourced. These queries were crowd sourced from Mechanical Turk by giving
humans a description of what occurred (e.g., an apple was moved in front of you) and
asking them what they would ask the robot to do. They were also crowd sourced by asking
humans in a real office kitchen to command the robot to perform tasks (given knowledge
of the robot’s abilities). This tests SayCan’s performance with natural requests.

e Long-Horizon. These challenging queries require SayCan to reason over temporally ex-
tended instructions to investigate how well it scales to such regimes.

Adding Skills: Drawer Manipulation

In order to support drawer manipulation we added another category of skills in SayCan.

e Drawer Manipulation. For drawer manipulation we use the learned policies in Ap-
pendix C and Section 3 with actions from BC and value functions from heuristics (If the
robot is next to the drawer, all drawer tasks are possible). In natural language these are

CLINNTS

specified as “open the drawer”, “close the drawer” and “put the object in the drawer”.

A few drawer-specific prompts also need to be added to teach the robot how to chain the drawer
skills together. The prompts are shown in Listing 2.

Human:
Robot:
Human :
Robot:

5. done.

Listing 2: Drawer Prompt in SayCan.

open the drawer
1. go to the drawers, 2. open the drawer, 3. done.

restock orange juice into the drawer

1. go to the drawers, 2. open the drawer, 3. put orange juice in the drawer, 4. close the drawer,

Human: restock two bottles of orange juice into the drawer

Robot:

1. go to the drawers, 2. open the drawer, 3. put orange juice in the drawer, 4. put orange juice in

the drawer, 5. close the drawer, 6. done.

The results of the drawer tasks are shown in Table. 6. SayCan achieved an overall planning success
rate of 100% and execution success rate of 33%. The main failure cases are manipulation failures,

Instruction

How would you pick up the coke can

How would you put the coke can in the your gripper
How would you grasp the coke can

How would you hold onto the coke can

How would you lift and hold the coke can up
How would you put the coke can down

How would you place the coke can on the table
How would you let go of the coke can

How would you release the coke can

How would you place the coke can

How would you move to the table

How would you go to the table

How would you park at the table

How would you come to the table

How would you navigate to the table

(a) NL Single Primitive

24

Instruction

How would you throw away the apple

How would you bring me a sponge?

How would you bring me a coke can

How would you grab me an apple

How would you grab me a 7up from the table

How would you deliver the red bull to the close counter
How would you throw away the jalapeno chips

How would you restock the rice chips on the far counter
How would you recycle the coke can

How would you throw away the water bottle

How would you bring me something hydrating

How would you put the apple back on the far counter
How would you recycle the 7up

How would you throw away jalapeno chips

How would you compost the apple

(b) NL Verb

Instruction

How would you bring me lime drink

How would you bring me something to clean the kitchen with

How would you bring me something to eat

How would you put the grapefruit drink on the close counter

How would you move the sugary drink to the far counter

How would you move something with caffine from the table to the close counter
How would you bring me an energy bar

How would you bring me something to quench my thirst

How would you bring me a fruit

How would you bring me a fruit from the close counter

How would you bring me something that is not a fruit from the close counter
How would you bring me a soda from the table

How would you bring me a soda

How would you bring me a bag of chips from close counter

How would you bring me a snack

(c) NL Nouns

Instruction

How would you pick up the apple and move it to the trash

How would you pick up the sponge and bring it to me

How would you pick up the coke can and bring it to me

How would you pick up the apple and bring it to me

How would you pick up the 7up and bring it to me

How would you pick up the redbull and move it to the close counter
How would you pick up the jalapeno chips and move it to the trash
How would you pick up the rice chips and move it to the far counter
How would you pick up the coke can and move it to the trash

How would you pick up the water bottle and move it to the trash
How would you pick up the grapefruit soda and bring it to me

How would you pick up the apple and move it to the far counter
How would you pick up the 7up and move it to the trash

How would you pick up the jalepeno chips and move it to the trash
How would you pick up the apple and move it to the trash

(d) Structured Language

25

Instruction

How would you put the coke can down on the far counter(with operator)

How would you put the coke can down on the far counter(at table)

How would you put the coke can down on the far counter(at table with coke can in hand)
How would you put the coke can down on the far counter(at far counter with coke can in
hand)

How would you put the sponge on the close counter(with operator)

How would you put the sponge on the close counter(at far counter)

How would you put the sponge on the close counter(at far counter with sponge in hand)
How would you put the sponge on the close counter(at close counter with coke can in
hand)

How would you pick up the drink from the far counter

I left something on the table, can you throw it away?

I left something on the table or the counter, can you bring it to me?

(e) Embodiment

Instruction

I opened a pepsi earlier. How would you bring me an open can?

I spilled my coke, can you bring me a replacement?

I spilled my coke, can you bring me something to clean it up?

I accidentally dropped that jalapeno chip bag after eating it. Would you mind throwing it
away?

I like fruits, can you bring me something I’d like?

There is a close counter, far counter, and table. How would you visit all the locations?
There is a close counter, trash can, and table. How would you visit all the locations?
Redbull is my favorite drink, can I have one please?

Would you bring me a coke can?

Please, move the pepsi to the close counter

Please, move the ppsi(intentional typo) to the close cuonter

Can you move the coke can to the far counter?

Can you move coke can to far counter?

Would you throw away the bag of chips for me?

Would you throw away the bag of chpis(intentional typo) for me?

(f) Crowd-Sourced

Instruction

How would you put an energy bar and water bottle on the table

How would you bring me a lime soda and a bag of chips

Can you throw away the apple and bring me a coke

How would you bring me a 7up can and a tea?

How would throw away all the items on the table?

How would you move an multigrain chips to the table and an apple to the far counter?
How would you move the lime soda, the sponge, and the water bottle to the table?
How would you bring me two sodas?

How would you move three cokes to the trash can?

How would you throw away two cokes?

How would you bring me two different sodas?

How would you bring me an apple, a coke, and water bottle?

I spilled my coke on the table, how would you throw it away and then bring me something
to help clean?

I just worked out, can you bring me a drink and a snack to recover?

How would you bring me a fruit, a soda, and a bag of chips for lunch

(g) Long-Horizon

Table 5: List of all instructions We evaluate the algorithm on 101 instructions on 2 scenes. The metrics and
success definitions can be found in Sec. 4.

26

where the robot fails to open the drawer wide enough to put objects in it, or fails to completely close
the drawer.

Instruction Plan rate Execution
rate

restock the coke and pepsi into the drawer 1.0 0.0

hide the 7up in the drawer 1.0 0.83

restock the coke into the drawer 1.0 0.17

Table 6: Drawer tasks

E.3 Chain of Thought Reasoning

One limitation of vanilla SayCan is that it doesn’t handle tasks that involves negation. This is
inherited from underline language models, and studied in the NLP community [14]. However, we
found by using chain-of-thought prompting [20] we can improve SayCan on this front.

For chain-of-thought prompting-based SayCan, we need to modify the prompt to include a part
called “Explanation”. We also slightly change how we use the language model. Instead of directly
using the scoring interface to rank possible options, we first use the generative decoding of LLM to
create an explanation, and then use the scoring mode, by including the explanation into the prompt.
The full prompt is shown in Listing 3.

Listing 3: Chain-of-thought prompt in SayCan.

Robot: Hi there, I’m a robot operating in an office kitchen.
You can ask me to do various tasks and I’11 tell you the sequence of actions I would do to accomplish your
task.

The following objects are in the scene: 7up, apple, tea, multigrain chips, kettle chips, jalapeno chips,
rice chips, coke, grapefruit soda, pepsi, redbull, energy bar, lime soda, sponge, and water bottle.

The following locations are in the scene: close counter, far counter, table, you, trash, bowl.

Human: Hold the sponge

Explanation: The user has asked for a single skill, I will just pick up the sponge.

Robot: 1. pick up the sponge, 2. done.

Human: Put the kettle chips here

Explanation: The user has asked for a type of chips, I will bring those to them.

Robot: 1. put down the kettle chips, 2. done.

Human: Move the grapefruit drink from the table to the close counter

Explanation: The user has asked me to move the grapefruit drink to the counter.

Robot: 1. find a grapefruit soda, 2. pick up the grapefruit soda, 3. go to the counter, 4. put down the
grapefruit soda, 5. done.

Human: Bring me some snacks

Explanation: The user has asked for snacks, I will bring jalapeno chips and an apple.

Robot: 1. find a jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the
jalapeno chips, 5. find an apple, 6. pick up the apple, 7. bring it to you, 8. put down the apple, 9.
done.

Human: Bring me something that isn’t a fruit

Explanation: The user has asked for something food that isn’t an fruit, I will bring an energy bar.

Robot: 1. find an energy bar, 2. pick up the energy bar, 3. bring it to you, 4. put down the energy bar,
5. done.

Human: Put the rice chips in the bowl and then move the tea to the table

Explanation: The user has asked me to do two tasks, I will do one and then the other.

Robot: 1. find the rice chips, 2. pick up the rice chips, 3. go to the bowl, 4. put down the rice chips,
5. pick up the tea, 6. go to the table, 7. put down the tea, 8. done.

Human: Throw away a redbull

Explanation: The user has asked me to throw away the redbull can, I will move it to the trash.

Robot: 1. find a redbull, 2. pick up the redbull, 3. go to trash, 4. put down the redbull, 5. done.

A few successful rollouts of the model at evaluation time is shown in Listing 4. As we can see, with
chain of thought prompting, the model can handle negations and tasks that require reasoning.

27

Listing 4: Chain-of-thought planning rollout with SayCan.

Human: Can you bring a drink without caffeine but has some fruit flavor?

Explanation: The user has asked for a drink without caffeine but has some fruit flavor, I will bring the
lime soda.

Robot: 1. find a lime soda, 2. pick up the lime soda, 3. bring it to you, 4. done

Human: Bring me chips that taste spicy

Explanation: The user has asked for chips that taste spicy, I will bring the Jalapeno chips.

Robot: 1. find the jalapeno chips, 2. pick up the jalapeno chips, 3. bring it to you, 4. put down the
jalapeno chips, 5.done

Human: I do not like pepsi, bring me something similar
Explanation: The user has asked for something similar to coke, I will bring coke
Robot: 1. find a coke, 2. pick up the coke, 3. bring it to you, 4. put down the coke, 5. done

Human: The snack is too small, bring me something more filling

Explanation: The user has asked for a snack that is more filling, I will bring the multigrain chips

Robot: 1. find the multigrain chips, 2. pick up the multigrain chips, 3. bring it to you, 4. put down the
multigrain chips, 5. done

E.4 Multilingual Queries

Since the underlying LM we used [11] has been trained on multilingual corpora, SayCan can handle
multilingual queries out of the box. The results of SayCan on multilingual queries are summarized
in Table. 7, and there is almost no performance drop on planning success rate when chaning the
queries from English to Chinese, French and Spanish.

Instruction Plan rate
bring me a can of coke 1.0
throw away the coke can 1.0
I spilled my coke, can you bring me something to help | 1.0
clean

Z—] R 1.0
Pt Al e 1.0
HHVRRIG T, IRBEA TR E RUR TORFITTHY 1.0
apporte moi une canette de coca 1.0
jeter la canette de coca 1.0
J’ai renversé mon coca, peux-tu m’apporter quelque | 0.0
chose pour m’aider a nettoyer

trdeme una lata de coca cola 1.0
tirar la lata de coca cola 1.0
Derramé mi coca cola, jpuedes traerme algo para ayu- | 1.0
dar a limpiar

Table 7: Multilingual queries plan success rate. instruction 4-12 are the Chinese, French and Spanish translation
of first 3 queries.

E.5 Additional Results

Additional results are shown in Figure 12 and Figure 13 and some failure cases in Figure 14. For
videos of the rollouts, please visit the anonymous website https://saycan-corl.github.io

F Open Source Environment

We have open sourced an implementation of SayCan in a Google Colab notebook for a tabletop
robot. Code can be found here. The environment is shown in Figure 16 and is a tabletop with a URS
robot and randomly generated sets of colored blocks and bowls. It is implemented with a ViLD
object detector for affordances [90] and GPT-3 as the large language model [2]. Steps are output in
the form robot.pick_and_place(object, location), leveraging the ability of LLMs to output
code structures. The policy is implemented with CLIPort [48], which is trained to output a pick and
place location.

28

https://saycan-corl.github.io
https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb

Human: | spilled
my coke, can you
bring me a
replacement?

Robot: | would find a coke can pick up the coke can bring it to you done
1. F|_ nd a coke can 200 100 100 100
2. Pick up the coke find a water bottle put down the coke can put down the coke can go to the trash can
can . . 002 0102 0.99 003
3. Bring it to you find a pepsi can bring it to you go to the trash can find a coke can
4. Done |] |]
001 001 0.44 02
go to the table go to the trash can done find a water bottle
| |
001 0.00 0.00 0.00
TR — go to the trash can pick up the pepsi can find a water bottle go to the table
| |
Combined score - o156 56 656

(a)

Human: | spilled
my coke, can you
bring me
something to clean
it up?

pick up the sponge bring it to you

Robot: | would I

find a sponge
1 F|nd a sponge 1.00 100 1 1.00 1.00
- pong go to the table put down the sponge put down the sponge go to the table
2. Pick up the | | |
08 ol 0.47 001
sponge) o)
I find a coke can bring it to you go to the table find a coke can
3. Bring it to you [
08 0104 0.21 0.00
4. Done
go to the trash can go to the table go to the trash can find a sponge
|
005 0.00 000 000
Language x Affordance find a water bottle go to the trash can done go to the trash can
Combined Score | |
0p1 0.00 0.00 0.00

Human: How
would you bring
me a fruit?

Robot: | would
1. Find an apple

X find an apple pick up the apple bring it to you done
2. Pick up the [[
1.00] 1.00 1 1.00 1.00
apple
_ . go to the table put down the apple put down the apple go to the table
3. Bring it to you]]]
oma 006 0.19 0.00
4. Done o o i
bring it to you bring it to you go to the table find an apple
| |
001 003 008 0.00
pick up the apple go to the table go to the trash can go to the trash can
0.01 0.00 0.00 0.00
Language x Affordance go to the trash can put down the water bottle pick up the apple pick up the apple
Combined Score
0.00 0.00 0.00 0.00

(©

Human: How would
you put the sponge
on the close
counter?

Robot: | would

a sponge pick up the sponge goto

e close counter put down the spong done
1. Find a sponge
! pong 100 200 200 200 200
2. Pick up the .
pick up the sponge put down the sponge put down the sponge done put down the sponge
sponge
p g om0 o0l5 0.68 0.00 001
3. Go to close
t go to the close counter go to the close counter pick up the sponge bring it to you find a sponge
counter
006 001 002 0.00 0,00
4. Put down the . ino _—
go to the table bring it to you bring it to you go to the trash can bring it to you
sponge | |
000 000 001 000 000
5. Done o © °
bring it to you go to the table go to the table put down the water bottle go to the trash can
Language x Affordance | | |
e 000 000 o1 000 000

(d)

Figure 12: Visualization of the decision making process of SayCan shows its interpretability and successful
temporally extended execution, where the top combined score chooses the correct skill.

29

Human: how would you
bring me two different
sodas?

Robot: | would

1. Find a coke can

2. Pick up the coke can
3. Bring it to you

4. Find a pepsi can

5 Pick up the pepsi can
6. Bring it to you

7. Done

Language x Affordance
Combined Score

find a coke can

1.00
find a pepsi can

0.28
go to the table

0.15

find a water bottle

012
find an apple

pick up the coke can

1.00

put down the coke can

002
bring it to you
0.00

put down the pepsi can

0.00
pick up the pepsi can

bring it to you

1.00

put down the coke can

0.81

go to the trash can

.08
find a water bottle

0.01

pick up the coke can

0.01

find a pepsi can

1.00
done

0.47
find a coke can
|

0.31
find a water bottle
|

0104
find a 7up can

|
002

Human: | spilled my coke on
the table, how would you throw
it away and then bring me
something to help clean?

Robot: | would

1. Find a coke can

2. Pick up the coke can
3. Go to the trash can

4. Put down the coke can
5. Find a sponge

6 Pick up the sponge

7. Go to the table

8. Put down the sponge
9. Done

Language x Affordance
Combined Score

find a sponge

100
go to the table

0.95-
done

077

put down the coke can

017
bring it to you

07

pick up the pepsi can

1.00
pick up the coke can

0.01

put down the coke can

0.01
bring it to you

0.00

put down the pepsi can

0.00

bring it to you

1.00
put down the pepsi can

0.01

put down the coke can

0.01

go to the trash can

0.00
pick up the pepsi can

0.00

done

1.00
go to the table

0.00

go to the trash can

0.00
find a coke can

0.00

find a pepsi can

0.00

(a) In this long-horizon task, the language model gives high score to the two sodas. After the coke is delivered, the language model scores
pepsi higher. The affordance rating overcomes potential early termination after the first can has been delivered.

find a coke can

100

go to the trash can
018

go to the table
016

find a sponge

016
find a water bottle

pick up the sponge
1.00
go to the trash can

003
put down the sponge

002
go to the table

o001
bring it to you

0.00

pick up the coke can

put down the coke can

bring it to you

go to the trash can

find a sponge

go to the table

go to the trash can

bring it to you

1.00

002

0.00

0.00

1.00

0.82
put down the sponge

015

om0
put down the coke can

001

go to the trash can

1.00

008

bring it to you
0104

find a sponge

put down the coke can

put down the coke can
100

bring it to you
opo

done
000

go to the table

000
pick up the sponge

0.00

.00

o5
bring it to you

001
pick up the sponge

0.00
done

0.00

put down the sponge

put down the coke can

0.00

put down the pepsi can

done

1.00

go to the trash can

a6
bring it to you

005

put down the sponge

003
pick up the coke can

003

(b) In this task, the model completes a 9-step plan. It narrowly avoids an early termination at step 5.

30

Figure 13: Long horizon sequences, see the video on our website say-can.github.io for more.

say-can.github.io

Human: How would
you bring me a bag
of chips from close

counter?

Robot: | would

1. Go to the close
counter

2. Go to the far
counter

3. Go to the close
counter

4. Go to the far
counter ...

Language x Affordance [

Combined Score |

&

go to the close counter

1.00

go to the far counter

0.27
bring it to you

0.25
go to the table

019
go to the trash can

005

go to the far counter
.
1.00 1

go to the table

0.58
bring it to you

040

go to the trash can

|
023

done

0.11

go to the trash can

005
go to the table

005
bring it to you

0104

go to the far counter

1.00

done

008
bring it to you

006
go to the table

004
go to the trash can

0103

(a) The affordance model fails to identify either bag of chips as pickable, though the language model approaches the counter twice.

Human: How would
you bring me
something to clean
the kitchen with?

Robot: | would
1. Find a sponge
2. Put down the
sponge

3. Bring it to you
4. Done

Language x Affordance [
Combined Score

Human: How would
you bring me a lime
soda and a bag of
chips?

Robot: | would

1. Find a lime soda
2. Pick up the lime
soda

3. Bring it to you

4. Done

Language x Affordance
Combined Score

find a sponge

[

put down the sponge

bring it to you

1.00

go to the table

go to the trash can

0.01

001

bring it to you

001

go to the drawers

0.00

1.00

pick up the sponge

0.68
bring it to you

0.29

go to the table

0.00

0.00

put down the water bottle

1.00

done

0.26

put down the sponge

0.16

go to the trash can
0.01

go to the table

0.00

(b) The affordance model fails to identify the sponge as pickable.

find a lime soda
[1.00
go to the table

0.00

find a coke can

0.00

find a water bottle

0.00
go to the trash can

0,00

|

pick up the lime soda

1.00
bring it to you

0102

put down the lime soda

0.01
go to the table

0.00

go to the trash can

0.00

bring it to you

1.00 1

|

put down the lime soda
[>
go to the table

0.27

go to the trash can

0.00

pick up the lime soda

0,00

(c) Language model terminates a long-horizon task prematurely.

done

[1.00

find a sponge

003

go to the trash can

0.00
go to the table

11

0.00
find a water bottle

\ |

0.00

done

1.00

find a lime soda

[

003
go to the table

0.02

go to the trash can

0p1
find a water bottle

0.00

Figure 14: Failure cases. The planning success rate was 84%. Of the errors, 65% were a result of an LLM error
and 35% were affordance errors.

31

Human: Bring me the
rice chips from the
drawer.

Robot: | would
1. Go to the drawer
2. Open the drawer open the drawer take the rice chips out of the drawer close the drawer pick up the rice chips bring it to you

3. Take the rice chips

f h d 1.00 1.00 1.00 1.00 1.00
Z“tcfl’ f eh ra(;"’er pick up the ice chips pick up the rice chips pick up the rice chips bring it to you lose the arawer
. Close the drawer
H : i .04
5. Pick up the rice chips 000 oo oo op1 opo
6. Bring it to you take the rice chips out o the drawer put the rice chips into the drawer put down the rice chips g0 to the table put down the rice chips
7. Put down the rice 0.00 000 000 0,00 000
chips close the drawer put down the rice chips bring it to you pick up the energy bar go to the table
8' Done 0.00 0.00 0.00 0.00 0.00
Language Affordance go'to the table pick up the multigrain chips g0 to the close counter take the rice chips out of the drawer open the drawer
Combined Score 0.00 0.00 0.00 0.00 0.00

Figure 15: A sequence of the robot taking rice chips from the drawers. Note the robot only has one arm, so it
needs to plan a long sequence to first take rice chips out of drawer and place on the counter, and then pick it up
again after closing the drawer.

Task: move all the blocks into
their matching colored bowls.
Step 1.
robot.pick-and_place("blue
block", "blue bowl")

Step 2.

robot.pick._and_place("green ==

block", "green bowl") < L 3
Step 3.

robot.pick_and place("yellow ViLD-based Affordances Initial State

block", "yellow bowl")

Figure 16: We have open sourced a Colab with a tabletop environment, a URS robot, and CLIPort-based
policy here: https://github.com/google-research/google-research/blob/master/saycan/
SayCan-Robot-Pick-Place.ipynb.

32

https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb
https://github.com/google-research/google-research/blob/master/saycan/SayCan-Robot-Pick-Place.ipynb

	Introduction
	SayCan: Do As I Can, Not As I Say
	Implementing SayCan in a Robotic System
	Experimental Evaluation
	Results
	Case Study of New Capabilities

	Related Work
	Conclusions and Limitations
	Contributions
	By Type
	By Person
	Corresponding Emails:

	Background
	RL and BC Policies
	RL and BC Policy Architecture
	RL and BC Policy Training
	RL and BC Policy Evaluations

	SayCan Details and Parameters
	SayCan Details
	Skills, Policies, and Affordance Functions
	LLM Size
	LLM Prompt

	Experiments
	Tasks
	Adding Skills: Drawer Manipulation
	Chain of Thought Reasoning
	Multilingual Queries
	Additional Results

	Open Source Environment

