
A Additional Results

A.1 Ablations

In this section we provide a number of additional ablations on the parameters of our method in the
MetaWorld environments. Specifically, we vary the amount of total feedback available for both our
method and PEBBLE. We train models with PEBBLE using the original amount of feedback in Lee
et al. [18], or 20× the amount of feedback used in Section 4.1 and Figure 2. Even with 20× less
feedback, our method is at par with PEBBLE. We also train models with our method using only half
of the feedback used in Figure 2, and attain nearly the same performance in Window Close, Door
Unlock, and Sweep-Into. This indicates that with better parameter tuning, our method could be even
more query efficient. Next, we investigate the effects of the disagreement query selection scheme
in Figure 7. Disagreement sampling leads to performance improvements in some environments,
particularly in Drawer Open, but makes no difference in others.

0 100000 200000 300000 400000 500000
0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
cc

es
s

R
at

e

Window Close

Few-Shot 200*
PEBBLE 200*
Few-Shot 100
PEBBLE 4000

0 100000 200000 300000 400000 500000
0.25

0.00

0.25

0.50

0.75

1.00

1.25
Door Close

Few-Shot 200*
PEBBLE 200*
Few-Shot 100
PEBBLE 4000

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Door Unlock

Few-Shot 500*
PEBBLE 500*
Few-Shot 250
PEBBLE 10000

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Button Press

Few-Shot 500*
PEBBLE 500*
Few-Shot 250
PEBBLE 10000

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Drawer Open

Few-Shot 1000*
PEBBLE 1000*
Few-Shot 500
PEBBLE 20000

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Sweep Into

Few-Shot 2500*
PEBBLE 2500*
Few-Shot 1250
PEBBLE 50000

Feedback Ablation

Figure 6: In this ablation, we very the amount of feedback used during training, as indicated by the
number in the legend next to each method’s name. The “*” indicates the original amount of feedback
used in Figure 2. We display results using the same amount of feedback as in [18] for PEBBLE,
and using half the amount of feedback for our method. Here we can clearly see that our few-shot
method performs better than PEBBLE, even though it uses 20× less feedback. In many tasks, we
can half the amount of feedback given to our few-shot method, and still attain the same performance
at convergence.

A.2 Plots of Feedback versus Performance

We originally chose to display environment steps on the X-axis of Figures 2 and 3 as was done in
prior work [18, 15]. Plotting the environment steps shows the ultimate convergence behavior of
each method, as feedback is stopped before the end of training. It also allows us to show SAC on
the same graph. Here, we provide versions of Figures 2 and 3 that have the amount of total feedback
given on the X-axis. These plots display the same overall trends – our few-shot method out-performs
baselines for the amount of feedback provided.

A.3 Locomotion Experiments

We evaluate our few-shot preference learning method on a locomotion task, Cheetah Velocity, from
Finn et al. [49] to show its broad applicability, particularly in settings where the agent’s goal is
temporal and cannot be encapsulated by an environment configuration. The agent is rewarded for
moving at a particular unseen target velocity, 1.5m/s. We use 10 other velocities for pretraining.
Figure shows our method and PEBBLE using different feedback schedules, with the total feedback

13

0 100000 200000 300000 400000 500000
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

Window Close, 200

0 100000 200000 300000 400000 500000
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Door Close, 200

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Door Unlock, 500

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

Button Press, 500

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Drawer Open, 1000

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sweep Into, 2500

Query Selection Ablation

Disagreement Uniform

Figure 7: Here we compare using the disagreement query sampling technique versus uniform ran-
dom query sampling in the MetaWorld environments. We see that for some environments, disagree-
ment sampling is important, but for others it does not have a large effect.

50 100 150 200

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

Window Close, 200

50 100 150 200
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Door Close, 200

0 100 200 300 400 500

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Door Unlock, 500

0 100 200 300 400 500

Total Feedback

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Button Press, 500

0 200 400 600 800 1000

Total Feedback

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Drawer Open, 1000

0 500 1000 1500 2000 2500

Total Feedback

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sweep Into, 2500

MetaWorld Test Tasks

Few-Shot (Ours) PEBBLE Init

Figure 8: Learning curves for the MetaWorld environments where the x-axis is chosen to be the
total feedback given to the agent over the course of training. Note that policies were trained for a bit
after all feedback was given, and thus final convergence is not demonstrated as well in this figure, as
in Figure 2. In environments where policies obtained decent performance before all feedback was
given we were able to further reduce the amount of feedback in the ablation shown in Figure 6.

provided on the X-axis. Each plot corresponds to training over five-hundred thousand environment
steps. We find that our method converges after only around 100 queries independent of the feed-
back schedule, while PEBBLE is unable to attain close to the same performance even with 1000
queries. The “init” baseline described in Section 3 performs similarly, but has slightly worse asymp-
totic convergence for 2 of 3 feedback schedules. We do minimal hyper-parameter tuning in these
environments, and believe the performance of our approach could be further improved. Overall, we
find that trends from manipulation environments hold, our few-shot method is able to quickly learn
the ground truth reward function.

14

10 20 30

Total Feedback

700

600

500

400

300

200

100

R
ew

ar
d

Point Mass, 36

10 20 30 40 50

Total Feedback

120

100

80

60

40

20

R
ew

ar
d

Reacher, 48

20 40 60

Total Feedback

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Su
cc

es
s

R
at

e

Window Close, 64

20 40 60 80 100

Total Feedback

0.25

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

R
at

e

Door Close, 100
Human Experiments

Few-Shot (Ours) PEBBLE

Figure 9: Learning curves for the human user experiments where the x-axis is chosen to be the total
feedback given to the agent over the course of training. Again for final convergence, please refer to
Figure 3.

0 50 100 150 200 250

Total Feedback

1400

1200

1000

800

600

400

200

0

R
ew

ar
d

250 Feedback

0 100 200 300 400 500

Total Feedback

1400

1200

1000

800

600

400

200

0

500 Feedback

0 200 400 600 800 1000

Total Feedback

1200

1000

800

600

400

200

0
1000 Feedback

Cheetah Velocity

Few-Shot (Ours) PEBBLE Init

Figure 10: Learning curves for the Cheetah Velocity experiment. The X-axis is given as the amount
of feedback provided over 500k environment steps. Each subplot corresponds to a different feedback
schedule.

A.4 Comparison with Example Based Methods

One proposed alternative to inferring reward functions via preferences, is inferring them using ex-
amples of “success” states to learn reward functions [8] or directly develop new RL algorithms [63].
While such methods have shown success in their chosen domains, they have a number of drawbacks
in comparison to preference based methods. First, example based methods often implicitly assume
that the underlying reward function for a task is reaching a goal state. While this is amendable to
some tasks, it can preclude objectives that cannot easily be classified as satisfying a goal condition.
This is particularly evident for tasks that are temporal in nature, like driving, where we might care
about intermediate safety and comfort, not just the final destination. For the aforementioned cheetah
locomotion task, it might be difficult for humans to provide examples of successful “running” states
without a pre-existing oracle policy. While we can easily provide a target velocity, it is difficult
to provide target joint positions etc. for a different embodiment. Second, example based methods
often optimize sparse-like rewards given for satisfying some learned condition, causing optimiza-
tion difficulties as horizon scales. This is not the case for preference based methods, which provide
consistent dense rewards.

In order to examine these tradeoffs, we compare our Few-Shot method to Recursive Classification
of Examples (RCE) from Eysenbach et al. [63] on two environments using 200 examples or 200
pieces of feedback, though in practice it may be harder to collect examples than preferences. In the
Cheetah environment, we examine the effect of example quality on performance by training RCE
with states from an expert policy pre-trained with SAC and states from a random policy relabeled to
have the target velocity. In a sparse Point Mass Barrier environment, we investigate the impact of
horizon and sparsity on example based methods. Results can be found in Figure 11. In the Cheetah
Velocity environment, we find that even with access to an expert trajectory, RCE does not attain
the same asymptotic performance as our method and takes longer to converge. Having access to
such data is unrealistic in the real world, as it is impossible to generate success states from a policy
if we have not yet solved the task. Even if we had expert demonstrations, it would then perhaps
make more sense to directly apply Inverse RL techniques. When we try to train RCE with just states

15

that have been relabeled to the target velocity and do not contain hard-to-specify joint information,
performance completely collapses. In the sparse Point Mass Barrier task, we see that despite the
4-dimensional state space RCE is unable to overcome the difficult exploration and long horizon of
the task. As our method uses dense rewards learned from preferences, it is almost able to match the
oracle SAC policy. While these tasks may be somewhat toy in nature, they demonstrate key areas
in which preference based learning excels: when it may be hard to specify temporal behavior via
examples, or when tasks are extremely sparse in nature.

0 100000 200000 300000 400000 500000

Environment Steps

1000

800

600

400

200

0

R
ew

ar
d

Cheetah Velocity, 200

0 100000 200000 300000 400000 500000

Environment Steps

1

0

1

2

3

4

5

6 Point Mass Barrier, 200
Comparison vs. Example Based Methods

SAC Few-Shot (Ours) PEBBLE RCE expert RCE

Figure 11: Learning curves for the Cheetah Velocity and Point Maze environment using 200 queries
for preference methods and 200 queries for RCE. For the Cheetah environment “expert” denotes
that examples were generated using a pretrained oracle policy, otherwise examples were generated
by relabeling existing data with the target velocity.

A.5 Human Feedback

In order to better understand the effects of different human users on few-shot preference learning, we
compare the performance of four different users on the DM Control reacher task. Each user trained
one policy using our Few-Shot method and one policy using PEBBLE. The results are shown in
Figure 12. Each users provided 48 preferences for each policy. We find that across all users, our
few-shot method out performs PEBBLE. Consistent with results in Figure 3, we did not find a
significant difference in the difficulty of providing feedback for this task between our method and
PEBBLE, unlike in the MetaWorld tasks. Results on the right hand side of Figure 12 show that when
users preferences do not agree with the ground truth reward function as often, performance declines
as expected. Our method is relatively robust until query accuracy, or the amount of time the users
preferences agreed with the ground truth reward, dropped below 75%. At this point, performance
began to decline. While these results indicate that our method is robust to human users, it shows a
limitation of our work: if users are unable to accurately provide feedback, reward adaptation will
suffer.

A.6 Franka Panda Experiments

Figure 13 shows the learning curves for the Franka Panda models that could not be fit in the main
paper due to space constraints.

B Experiment Details

In this section, we enumerate the specifics of the experiments we use to evaluate few-shot preference
based RL. As our method requires generating datasets from past experience, we include dataset
generation specifics in addition to environment and evaluation details.

B.1 Meta-World

Environments. For the MetaWorld experiments, we adopt the ML10v2 Benchmark for MetaWorld
[20]. We keep environments in the “goal unobserved” mode, where the agents must infer the final

16

1 2 3 4
User

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
co

re

User Performance

1 2 3 4
User

0.0

0.2

0.4

0.6

0.8

Q
ue

ry
 A

cc
ur

ac
y

User Accuracy

0.70 0.75 0.80 0.85 0.90
Query Accuracy

140

120

100

80

60

40

20

R
ew

ar
d

Accuracy vs. Performance
DM Control Reacher User Study

Few-Shot PEBBLE

Figure 12: A study of four different users on the DM Control Reacher task. Left: The per-
formance of policies trained by each user expressed as a normalized score between a random
policy and a fully trained SAC policy on the task. This is computed as (method reward −
random reward)/(SAC reward−random reward). Center: The percentage of each users preferences
that aligned with the ground truth reward function for the task. This information was unavailable to
the users and is designed to indicate how accurate the human users were. Right: A comparison of
final ground truth reward against the alignment of the users preferences with the ground truth reward
function.

50000 100000 150000 200000 250000 300000 350000 400000

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Reach Goal 1, 200

50000 100000 150000 200000 250000 300000 350000 400000

0.0

0.2

0.4

0.6

0.8

1.0

Reach Goal 2, 200

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Block Push Goal 1, 2000

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Block Push Goal 2, 2000

Few-Shot PEBBLE

Figure 13: Learning Curves for the Panda experiments in simulation.

desired position of an object (i.e. door handle) from the reward function alone. MetaWorld envi-
ronments have both parametric and non-parametric task variations. Parameteric variations refer to
changes in the initial and final object positions. Non-parametric variations refer to changes in the
objects and their desired conditions, like open door vs close window. Because we wanted to directly
compare with the hardest environments used in PEBBLE (Sweep Into, Drawer Open, Button press),
we slightly modified the set of environments used in ML10 . This amounts to collecting pre-training
data on the 10 tasks shown at the top of Figure 2.

Dataset. The datasets for Metaworld are generated by running ground-truth policies from the 10
prior tasks with some additional Gaussian noise. For each of the 10 tasks, we consider 25 param-
eteric variations, amounting to 250 different reward functions in the training set, though they each
belong to one of only 10 overarching categories. For each of these variations, we collect a dataset
of (s, a, s′, r) tuples by running different policies in the given tasks environment with 0 mean, 0.1
standard deviation Gaussian action noise. Specifically, we run 15 episodes with actions from the ex-
pert policy, 25 episodes with actions from parametric variations of the same task family, 10 episodes
with actions from the expert policy of completely different task family, and 2 episodes with com-

17

pletely uniform random actions. In order to do this we use the scripted policies provided with the
MetaWorld benchmark. From each of these datasets, we sample 6000 queries uniformly at random
and assign them labels using the ground truth reward. In summary, we use 10 tasks, each with 25
variations of 6000 queries each.

Evaluation. For MetaWorld, we report the success rate as defined by the MetaWorld benchmark.
The test environments are obtained in the same way as PEBBLE, using the standalone versions
from MetaWorld. These environments have some parametric variations not included in the prior
task environments which makes the test setting slightly more difficult.

B.2 DM Control

Environments. We created custom versions of the standard Point Mass and Reacher environments
in DM Control [61]. The default Point Mass environment has a randomly initialized agent attempt
to reach the center of a square environment. We modify the point mass environment so that the goal
position is randomly chosen, and use the negative L2 distance to the goal as the ground truth reward
function. The default sigmoid style reward function would assign zero reward to a large part of the
state space, making artificial query generation difficult. For the reacher environment we mask the
goal from the observation space an also use the negative L2 distance as the reward function. All
other aspects of the state and action space are left the same. The point mass environment terminates
when the agent reaches the goal position, and the default time limit of the reacher environment was
halved to make learning easier. In both of these environments the task distribution is given by the
distribution of unknown goal locations. Additionally when comparing to example-based methods
we develop a custom Point Mass Barrier environment on top of the standard point mass. We double
the size of the point mass environment in both x and y directions, then place a horizontal barrier
at y = 0. The task distribution is also given by different goal locations. The ground truth reward
is given by the decrease in L2 distance to the barrier crossing point and then the goal location in
sequence (max < 2 across the whole trajectory) in addition to a sparse reward of three for reaching
the goal. Consequently, the task is considered solved if the agent receives a reward larger than 3.
The task distribution is given by goal locations at y > 0.

Dataset. For the Point Mass and Reacher DM control environments we use completely randomly
generated dataset. For the Point Mass environment we collect 25,000 random time-steps of the envi-
ronment 16 X-Y goal positions, which include permutations values in the set {0, 0.5,−0.5, 1,−1}2.
For reacher environment we also collect 25,000 random time-steps of the environment, but over 12
goals each defined by different angle θ and radius r values, include goals at radius one for each of
the four cardinal directions, goals at radius 0.66 for the cardinal directions rotated by 45 degrees,
and goals at radius 0.33 for the cardinal directions shifted by 22.5 degrees. From each of the tasks
datasets we generate 4000 artificial queries for pre-training uniformly at random. For the Point Mass
Barrier task we use 10 pretraining tasks. We then sample 40k queries uniformly at random from the
replay buffers of agents train with SAC for 100k steps.

Evaluation. We evaluate the point mass environment on the unseen goal of (-0.75, 0.8) and the
reacher environment on the unseen goal of (5.5, 0.8). The Point Mass Barrier task is evaluated on
the goal (0, 1) at the top middle of the environment.

B.3 Franka Panda

Environments. We design two tasks for the Franka robot. For both tasks we use end-effector delta
control, ie the agent chooses x, y, z deltas for the end effector to move to. The first task is the Reach
task, where the robot is tasked with simply moving its end-effector towards a target goal position g.
The reward function is again the negative L2 distance to the goal position, or −||e− g||22 where e is
the absolute position of the end effector. The second task is a block pushing task where the agent
wants to push a block from a randomized starting location to a fixed goal position g. The reward
function for this task is −0.1||e− b||22 − ||b− g||22 where e is defined as before and b is the absolute
position of the center of the block. The goal positions always have a z value of half the block’s
height. The agent observes the (x, y) position of the block, but does not know the goal location. The
block is 5cm across. Again the task distribution for both environments is given by the distribution
of unknown goal locations. We use the PyBullet simulator for our training environments. When
transferring the policies to the real world, use two Intel Realsense cameras and OpenCV Aruco tag

18

tracking to compute the estimated (x, y) position of the center of the block. An image of our setup
can be found in Figure 14. We also add zero mean, 0.001 standard deviation noise to the state to aid
in sim to real transfer. For the Reach task we define success as being within 2.5cm of the goal and
for the Block push task we define it to be within 5 cm.

Figure 14: Depiction of the real world robot setup
with a Franka Panda arm. We use ArUco tags
for tracking the position of objects in combina-
tion with Intel RealSense cameras. For the reach
task, the robot just needs to move its end effect
to a target position. For the block push task, the
marked block must be moved to a specific loca-
tion. The blocks position is computed using two
Intel RealSense Cameras.

Dataset. We generate behavior datasets for the
reach task by simply collecting random roll-
outs of 10,000 timesteps for 75 randomly sam-
pled goals. We generate behavior datasets for
the block push task by training polices to push
blocks to 16 different locations, then applying
a similar strategy to the MetaWorld environ-
ments: for each task we run 8 random episodes,
50 expert episodes, and 5 episodes using ac-
tions from each of the other tasks (80 total), all
with zero mean standard deviation 0.3 Gaus-
sian noise. Unlike in meta-world, we did not
spend time tuning data generation for the Panda
experiments. We then generated 6000 artifi-
cial queries for each of the 75 reach tasks, and
20,000 artificial queries for each of the 16 block
pushing tasks, leaving one out for validation.

Evaluation. We evaluate each of the policies
by transferring them from simulation to a real
Franka-Panda robot. For control, we use the
PolyMetis library [64]. We train policies on two
different unseen goal positions, which are listed
in Table 1. We evaluate each run of the reach
task using four initial robot configurations and
each run of the Block Push task using four ini-
tial block locations. Results are reported in final
meters to the goal. We found that the second
block push location of (0.35, -0.3) was much
easier for the robot regardless of method. This
is likely because block state estimation was more accurate on that side of the table due to the camera
setup.

B.4 Locomotion

Environments. We take the Cheetah Velocity environment from Finn et al. [49], but use a horizon
of length 500. The ground truth reward function is given by −|v − target| − ||a||22, where “target”
is a target velocity. Thus, the agent is rewarded for running at a certain speed, and we vary the
target speed across tasks. Unlike in manipulation environments, reward functions for locomotion
environments cannot be specified through any type of “goal condition” as behavior across time
matters.

Dataset. We generate behavior datasets by taking the replay buffers of policies trained with SAC
for 150k environment steps using different target velocities in increments of 0.25m/s, starting with
0.25m/s and ending with 2.75 m/s. We leave out 1.5m/s for the test , making for 10 total training
tasks, which is far less than the upwards of 100 training tasks used in Finn et al. [49]. We generate
40k artificial queries uniformly at random from each replay buffer for the training dataset.

Evaluation. We evaluate all approaches on the unseen velocity of 1.5m/s.

B.5 Human Experiments

Here we provide an overview of the procedure used in our human experiments in Section 4.2. We use
a single expert human subject for experiments in Figure 3, who was familiar with preference based
RL and both the MetaWorld and DM Control benchmarks. The user completed experiments on
PointMass, Reacher, Window Close, and Door Close in that order. The human results in Figure 12

19

Table 2: Hyperparameters used for pre-training with the MAML Algorithm.
Parameter Value
Outer LR 0.0001
Inner LR 0.001

Support Set Size 32
Query Set Size 32
Task Batch Size 4
Learn Inner LR True
Ensemble Size 3
Reward Arch 3x 256 Dense

Activation ReLU
Output Activation Tanh

Segment Size 25 (MW, FP, C), 10 (DM)

are from three additional users familiar with learning for robotics, who followed the same procedure.
Each environment required training four policies – two for PEBBLE and two for our Few-Shot
method. The user trained all four policies in parallel on a single computer with a user interface that
looked similar to the query visualizations shown in Figure 5. As feedback was elicited intermittently
through the course of training, we cannot fully separate the time it took for users to answer queries
with the time used to train the policy. However, we know that the total time before all queries
were answered was around 22 minutes for Point Mass, around 28 minutes for Reacher, around 45
minutes for Window Close, and around 1 hour for Door Close. Whenever the user could not make a
determination about the query, they were asked to skip it. We count skip queries in the total feedback
budget and measured the practicality of the user interactions by the number of such skip queries as
shown in Figure 3. There we see that human users did not need to skip queries that frequently, and
were able to be relatively accurate with respect to the ground truth reward function. Moreover, we
found that in the more difficult environments, the human user skipped fewer queries and was more
accurate when training a policy using our few-shot method. This is backed up by the visualizations
in Appendix D, which qualitatively demonstrates that the few-shot method asks easier to distinguish
queries in the robotics environments, likely due to pretraining.

C Hyperparameters

In this section, we detail the hyper-parameters used for our method and baselines. We first give
hyperparameters used in pre-training, then provide the hyperparameters used for online experiments.
In the following tables we use MW for MetaWorld, DM for DM Control, and FP for Franka Panda.
For MetaWorld artificial feedback experiments, we run five random seeds for each method. For
human feedback experiments we run two seeds for each method, as it takes a large amount of time
to collect human feedback. For real world experiments, we run four seeds for each reaching task,
and two seeds for each block pushing task for 8 and 4 seeds total, respectively.

Pretraining. We use the MAML algorithm in combination with the Adam Optimizer. We used
learned inner learning rates as in Antoniou et al. [65].

Online Adaptation. Here we list the hyperparameters and network architectures used for SAC,
PEBBLE, and our method in Table 3. In comparison to the original PEBBLE algorithm, we change
the segment size to 25 and increased the reward frequency. We found that these changes improved
performance for PEBBLE as well. We also train reward models until they achieve 95% accuracy,
instead of training them for a fix number of epochs or until they reach 97% accuracy as done in the
PEBBLE codebase. We run a maximum of 40 MAML adaptation steps. If at that point the reward
model has not reached 95% accuracy, we train it again with the Adam Optimizer. For all methods we
did not run unsupervised exploration prior to beginning training. While unsupervised exploration
leads to improvements in locomotion environments as shown in Lee et al. [18], we found that it did
not offer a large improvement in robotics environments. This is likely because a sufficient portion
of the state space can be explored quickly in locomotion environments like Cheetah and Quadruped,
but not in MetaWorld, where task are longer horizon and require both reaching and interacting with
specific parts of the state space. For all runs we use a constant feedback schedule, ie the same
amount of feedback each session. We list the exact feedback specifications in Table 4. Feedback

20

Table 3: Hyper-parameters for preference learning algorithms.
Parameter Artificial Feedback Human Feedback
Init Temp 0.1 0.1
Discount 0.99 0.99
EMA τ 0.995 0.995
Learning Rate 0.0003 0.0003
Target Update Freq 2 2
(β1, β2) 0.9, 0.999 0.9, 0.999
Actor and Critic Arch 3x 256 Dense MW, FP, C 2x 256 DM, 3x 256 Dense MW
Actor and Critic Activation ReLU ReLU
SAC Batch Size 512 512
Reward Net Batch Size 256 256
Disagreement Sample Multiplier 10 10

Table 4: Specific feedback schedule for each environment. For all environments, the first session
always sampled queries at uniform. For the MetaWorld human experiments, the first half of all
queries were asked uniformly at random.

Environment(s) Max Feedback Feedback Per Session Session Frequency (K)
Window Close, Door Close 200 8 5000
Door Unlock, Button Press 500 8 5000
Drawer Open 1000 10 5000
Sweep Into 2500 20 5000
Point Mass (Human) 36 6 20000
Reacher (Human) 48 8 20000
Window Close (Human) 64 8 10000
Door Close (Human) 100 10 10000
Reach Panda 200 8 5000
Block Push Panda 2000 20 5000
Cheetah Velocity (vs. RCE) 200 4 6000
Cheetah Velocity 250 3 5000
Cheetah Velocity 500 5 5000
Cheetah Velocity 1000 10 5000
Point Mass Barrier 200 5 10000

schedules used in the ablation experiments in Appendix A were constructed by multiplying the “Max
Feedback” and “Feedback per Session” values by 20 for PEBBLE and 0.5 for our method.

RCE. For our comparisons against RCE in Figure 11, we left all parameters at their defaults. Ex-
ample states for the Cheetah Velocity environment were given via an expert demonstration, or by
relabeling random states with the target velocity. Example states for the Point Mass Barrier environ-
ment were created by sampling positions within the target location with feasible velocities.

D Additional Visualizations

Here we provide select queries shown to users when training from real human feedback using our
Few-Shot method. We compare queries asked by each method at the same point in training. The
set of nearly all queries used to train agents from human feedback is included in the supplementary
material download on OpenReview. Note that the segment size used in MetaWorld was 25, but we
showed users every other frame as the changes between individual frames were minimal. In each
figure the trajectory segment with the check mark was selected by the user.

21

…

…

…

…

Few-Shot (Ours), 28th Query

PEBBLE, 28th Query

t = 1 t = 2 t = 3 t = 4 t = 5 t = 10

Figure 15: A depiction of the 28th query asked to users when training the Point Mass Agent from
human feedback. The winning query was chosen based on proximity of the agent (yellow) to the
goal position (red). At this point in training, our Few-Shot method sampled queries closer to the
goal position than PEBBLE.

…

…

…

…

Few-Shot (Ours), 35th Query

PEBBLE, 35th Query

t = 1 t = 2 t = 3 t = 4 t = 5 t = 10

Figure 16: A depiction of the 35th query asked to users when training the reacher from human
feedback. Our method’s query (top) was easier to answer because the top trajectories’ arm was
clearly closer to the target position.

22

…

…

…

…

Few-Shot (Ours), 62nd Query

PEBBLE, 62nd Query

t = 1 t = 5 t = 9 t = 13 t = 17 t = 25

Figure 17: This shows one of the last queries asked for the Window Close environment. Here we
see that our method’s query asks the user to choose between a closed and unclosed window (top),
while PEBBLE asked the user to choose between two different, hard to distinguish, arm positions.

…

…

…

…

Few-Shot (Ours), 56th Query

PEBBLE, 56th Query

t = 1 t = 5 t = 9 t = 13 t = 17 t = 25

Figure 18: This shows a query towards the middle of training for the Door Close environment.
At this point, the few-shot method is asking the user to compare a completely closed door (better)
versus an open one, while PEBBLE’s query only includes a partially closed door.

23

	Additional Results
	Ablations
	Plots of Feedback versus Performance
	Locomotion Experiments
	Comparison with Example Based Methods
	Human Feedback
	Franka Panda Experiments

	Experiment Details
	Meta-World
	DM Control
	Franka Panda
	Locomotion
	Human Experiments

	Hyperparameters
	Additional Visualizations

