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A Hardware Experiments2

Figure 1: Pipeline for Real Hardware Experiments

A.1 Real-world prompt demonstration3

Here we describe how we collected and processed a visual, human demonstration in the real-world4

to treat as a prompt for the trained TTP policy (Fig. 2). Essentially, we collect demonstration5

pointcloud sequences and manually segment them into different pick-place segments, followed by6

extracting object states. At each high-level step, we measure the state using three RealSense RGBD7

cameras[1], which are calibrated to the robot frame of reference using ARTags [2]. The camera8

output, extrinsics, and intrinsics are combined using Open3D [3] to generate a combined pointcloud.9

This pointcloud is segmented and clustered to give objects’ pose and category using the algorithm10

from [4] and DBScan. For each object point cloud cluster, we identify the object pose based on the11

mean of the point cloud. For category information we use median RGB value of the pointcloud,12

and map it to apriori known set of objects. In the future this can be replaced by more advanced13

techniques like MaskRCNN [5]. Placement poses are approximated as a fixed, known location, as14

the place action on hardware is a fixed ‘drop’ position and orientation. The per step state of the15

objects is used to create the input prompt tokens used to condition the policy rollout in the real-16

world, as described in Section 3.2.17

A.2 Hardware policy rollout18

We zero-shot transfer our policy π trained in simulation to robotic hardware, by assuming low-19

level controllers. We use a Franka Panda equipped with a Robotiq 2F-85 gripper, controlled using20
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Figure 2: Human demonstration of real-world rearrangement of household dishes.

the Polymetis control framework [6]. Our hardware setup mirrors our simulation, with different21

categories of dishware (bowls, cups, plates) on a table, a “dishwasher” (cabinet with two drawers).22

The objective is to select an object to pick and place it into a drawer (rack) (see Fig. 2).23

Once we collect the human prompt demonstration tokens, we can use them to condition the learned24

policy π from simulation. Converting the hardware state to tokens input to π follows the same25

pipeline as the ones used for collecting human demonstrations. At each step, the scene is captured26

using 3 Realsense cameras, and the combined pointcound is segmented and clustered to get object27

poses and categories. This information along with the timestep is used to generate instance tokens28

as described in Section 2 for all objects visible to the cameras. For visible already placed objects,29

the place pose is approximated as a fixed location. The policy π, conditioned on the human demo,30

reasons about the state of the environment, and chooses which object to pick. Next, we use a grasp31

generator from [7] that operates on point clouds to generate candidate grasp locations on the chosen32

object. We filter out grasp locations that are kinematically not reachable by the robot, as well as33

grasp locations located on points that intersect with other objects in the scene. Next, we select the34

top 5 most confident grasps, as estimated by the grasp generator, and choose the most top-down35

grasp. We design an pre-grasp approach pose for the robot which is the same final orientation as36

the grasp, located higher on the grasping plane. The robot moves to the approach pose following a37

minimum-jerk trajectory, and then follows a straight line path along the approach axes to grasp the38

object. Once grasped, the object is moved to the pre-defined place pose and dropped in a drawer.39

The primitives for opening and closing the drawers are manually designed on hardware.40

The learned policy, conditioned on prompt demonstrations, is applied to two variations of the same41

scene, and the predicted pick actions are executed. Fig.3 shows the captured image from one of42

the three cameras, the merged point cloud and the chosen object to pick and selected grasp for43

the same. The policy was successful once with 100% success rate, and once with 75%, shown in44

Fig.??. The failure case was caused due to a perception error – a bowl was classified as a plate. This45

demonstrates that our approach (TTP) can be trained in simulation and applied directly to hardware.46

The policy is robust to minor hardware errors like a failed grasp; it just measures the new state of the47

environment and chooses the next object to grasp. For example, if the robot fails to grasp a bowl,48

and slightly shifts the bowl, the cameras measure the new pose of the bowl, which is sent to the49

policy. However, TTP relies on accurate perception of the state. If an object is incorrectly classified,50

the policy might choose to pick the wrong object, deviating from the demonstration preference. In51

the future, we would like to further evaluate our approach on more diverse real-world settings and52

measure its sensitivity to the different hardware components, informing future choices for learning53

robust policies.54

A.3 Transforming hardware to simulation data distribution55
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Figure 3: Point cloud and grasps for different objects during policy rollout.

Figure 4: Coordinate Frame of ref-
erence in simulation (left) and real
world setting (right). Red is x-axis,
green is y-axis and blue is z-axis.

The policy trained in simulation applies zero-shot to real-world56

scenarios, but it requires a coordinate transform. Fig. 4 shows57

the coordinate frame of reference in simulation and real world58

setting. Since our instance embedding uses the poses of ob-59

jects, it is dependant on the coordinate frame that the train-60

ing data was collected in. Since hardware and simulation are61

significantly different, this coordinate frame is not the same62

between sim and real. We build a transformation that converts63

hardware measured poses to the simulation frame of reference,64

which is then used to create the instance tokens. This ensures65

that there is no sim-to-real gap in object positions, reducing66

the challenges involved in applying such a simulation trained67

policy to hardware. In this section we describe how we convert68

the real world coordinates to simulation frame coordinates for running the trained TTP policy on a69

Franka arm.70

We use the semantic work area in simulation and hardware to transform the hardware position coor-71

dinates to simulation position coordinates. We measure the extremes of the real workspace by man-72

ually moving the robot to record positions and orientations that define the extents of the workspace73

for the table. The extents of the drawers are measured by placing ARTag markers. We build 374

real-to-sim transformations using the extents for counter, top rack and bottom rack: Let X ∈ R3×N75
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contain homogeneous xz− coordinates of a work area, along its column, as follows:76

X =

x(1) x(2) · · ·
z(1) z(2) · · ·
1 1 · · ·

 =
[
x(1) x(2) · · ·

]
(1)

As the required transformation from real to simulation involves scaling and translation only, we77

have 4 unknowns, namely, a = [αx, αy, xtrans, ztrans]. Here αx, αz are scaling factors and78

xtrans, ztrans are translation offset for x and z axis respectively. To solve Xsim = AXhw, we79

need to find the transformation matrix A = â =

[
αx 0 xtrans

0 αz ztrans
0 0 1

]
.80

Xsim = âXhw (2)
Rewriting the system of linear equations, (3)

=⇒


x
(1)
sim

z
(1)
sim

x
(2)
sim

z
(2)
sim
...

 =


x
(1)
hw 0 1 0

0 z
(1)
hw 0 1

x
(2)
hw 0 1 0

0 z
(2)
hw 0 1

...
...

...
...

aT (4)

(5)

Let the above equation be expressed as Ysim = Zhwa
T where Ysim ∈ R2N×1, Zhw ∈ R2N×4, and81

aT ∈ R4×1. Assuming we have sufficient number of pairs of corresponding points in simulation82

and real world, we can solve for a by least squares a = (ZT
hwZhw)

−1ZT
hwYsim. The height ysim is83

chosen from a look-up table based on yhw. Once we compute the transformation A, we store it for84

later to process arbitrary coordinates from real to sim, as shown below.85

def get_simulation_coordinates(xyz_hw: List[float], A: np.array) -> List:

xz_hw = [xyz_hw[0], xyz_hw[2]]

X_hw = get_homogenous_coordinates(xz_hw)

X_sim_homo = np.matmul(A, X_hw)

y_sim = process_height(xyz_hw[1])

X_sim = [X_sim_homo[0]/X_sim_homo[2], y_sim, X_sim_homo[1]/X_sim_homo[2]]

return X_sim

The objects used in simulation training are different from hardware objects, even though they belong86

to the same categories. For example, while both sim and real have a small plate, the sizes of these87

plates are different. We can estimate the size of the objects based on actual bounding box from the88

segmentation pipeline. However, it is significantly out-of-distribution from the training data, due to89

object mismatch. So, we map each detected object to the nearest matching object in simulation and90

use the simulation size as the input to the policy. This is non-ideal, as the placing might differ for91

sim versus real objects. In the future, we would like to train with rich variations of object bounding92

box size in simulation so that the policy can generalize to unseen object shapes in the real world.93

B Simulation Setup94

B.1 Dataset95

“Replica Synthetic Apartment 0 Kitchen” consists of a fully-interactive dishwasher with a door and96

two sliding racks, an adjacent counter with a sink, and a “stage” with walls, floors, and ceiling.97

We use selected objects from the ReplicaCAD [8] dataset, including seven types of dishes (cups,98

glasses, trays, small bowls, big bowls, small plates, big plates) which are loaded into the dishwasher.99

Fig. 5 shows a human demonstration recorded in simulation by pointing and clicking on desired100
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Figure 5: Human demonstration with point and click in simulation

object to pick and place. We initialize every scene with an empty dishwasher and random objects101

placed on the counter. Next, we generate dishwasher loading demonstrations, adhering to a given102

preference, using an expert-designed data generation script. Expert actions include, opening/closing103

dishwasher/racks, picking/placing objects in feasible locations or the sink if there are no feasible104

locations left. Experts differ in their preferences, and might choose different object arrangements in105

the dishwasher.106

B.2 Expert Preferences107

Table 1: Three example pref-
erences for dishwasher loading.
Rack order and their respective
contents (ordered by preference).

First? Top Bottom

Top
1. cups
2. glasses
3. small bowl

1. big plates
2. small plates
3. trays
4. big bowls

Bottom
1. cups
2. glasses
3. small bowl

1. big plates
2. small plates
3. trays
4. big bowl

Bottom
1. small plate
2. glasses
3. cups

1. big bowls
2. trays
3. big plates
4. small bowl

We define a preference in terms of expert demonstration ‘prop-108

erties’, like which rack is loaded first with what objects? There109

are combinatorially many preferences possible, depending on110

how many objects we use in the training set. For example, Ta-111

ble 1 describes the preferences of dishwasher loading in terms112

of three properties - first loaded tray, objects in top and bottom113

tray. Each preference specifies properties such as which rack114

to load first and their contents. In Table 1, Preferences 1 &115

2 vary in the order of which rack is loaded first, while 2 & 3116

both load the bottom rack first with similar categories on top117

and bottom but with different orderings for these categories.118

Other preferences can have different combinations of objects119

loaded per rack.120

To describe a preference, let there be k properties, where each121

can take mk values respectively. For example, a property to122

describe preference can be which rack is loaded first, and this123

can take two values; either top or bottom rack. The total num-124

ber of possible preferences is G =
∏k

i=1 mi.125

In our demonstration dataset, we have 100 unique sessions per preference. Each session can act as126

a prompt to indicate preference as well as provide situation for the policy. Each session is about127

∼ 30 steps long. With 7 preferences, this leads to 70, 000 × 30 = 2, 100, 000 ∼ 2 million total128

training samples, creating a relatively large training dataset from only 100 unique demonstrations129

per preference.130

Individual task preferences differ in the sequence of expert actions, but collectively, preferences131

share the underlying task semantics. For example, the user always opens the dishwasher rack be-132

fore loading it for all preferences. By jointly learning over all preferences, our policy can benefit133

from cross-preference data to learn task structure, and sparse per-preference data to learn expert134

preference.135
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B.3 Dynamically appearing objects136

To add additional complexity to our simulation environment, we simulate a setting with dynami-137

cally appearing objects later in the episode. During each session, the scene is initialized with p%138

of maximum objects allowed. The policy/expert starts filling a dishwasher using these initialized139

objects. After all the initial objects are loaded and both racks are closed, new objects are initialized140

one-per-timestep to the policy. The goal is to simulate an environment where the policy does not141

have perfect knowledge of the scene, and needs to reactively reason about new information. The142

policy reasons on both object configurations in the racks, and the new object type to decide whether143

to ‘open a rack and place the utensil’ or ‘drop the object in the sink’.144

C Training145

In this Section we describe details of the different components of our learning pipeline.146

C.1 Baseline: GNN147

Architecture We use GNN with attention. The input consists of 12 dimensional attribute inputs148

(1D-timestep, 3D-category bounding box extents, 7D-pose, 1D-is object or not?) and 12 dimen-149

sional one-hot encoding for the preference.150

input_dim: 24

hidden_dim: 128

epochs: 200

batch_size: 32

Optimizer : Adam with lr = 0.01 and weight decay= 1e− 3.151

Reward function for GNN-RL Reward function for the RL policy is defined in terms of prefer-152

ence. The policy gets a reward of +1 every time it predicts the instance to pick that has the category153

according to the preference order and whether it is placed on the preferred rack.154

C.2 Our proposed approach: TTP155

Architecture We use a 2-layer 2-head Transformer network for encoder and decoder. The input156

dimension of instance embedding is 256 and the hidden layer dimension is 512. The attributes157

contribute to the instance embedding as follows:158

C_embed: 16

category_embed_size: 64

pose_embed_size: 128

temporal_embed_size: 32

marker_embed_size: 32

For the slot attention layer at the head of Transformer encoder, we use:159

num_slots: 50

slot_iters: 3

Optimizer We use a batch-size of 64 sequences. Within each batch, we use pad the inputs with 0160

upto the max sequence length. Our optimizer of choice is SGD with momentum 0.9, weight decay161

0.0001 and dampening 0.1. The initial learning rate is 0.01, with exponential decay of 0.9995 per162

10 gradient updates. We used early stopping with patience 100.163

C.3 Metrics164
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Figure 6: Category level
accuracy grouped by
batch size for prompt-
situation training.

In Section 3 , we presented packing efficiency (PE) and edit distance165

(ED) metrics collected on a policy rollout. We present additional metrics166

about training progress and rollout here.167

Category-token Accuracy indicates how well the policy can mimic the168

expert’s action, given the current state. We monitor training progress by169

matching the predicted instance to the target chosen in demonstration170

(Fig. 6). We see that TTP is able to predict the same category object to171

pick perfectly (accuracy close to 1.0). However, this is a simpler setting172

that sequential decision making. During rollout, any error in a state173

could create a setting that is out-of-distribution for the policy. Thus,174

category token accuracy sets an upper bound for rollout performance,175

that is, while having high category token accuracy is necessary, it is not176

sufficient for high packing efficiency and inverse edit distance.177

Temporal efficiency:178

Figure 7: TE (SPL) metric for held-out test settings.

Just like SPL [9] for navigation agents,179

we define the efficiency of temporal180

tasks in policy rollout, in order to study181

how efficient the agent was at achieving182

the task. For episode i ∈ [1, ..N ], let183

the agent take pi number of high-level184

interactions to execute the task, and the185

demonstration consists of li interactions186

for the initial state. We scale the pack-187

ing efficiency PEi of the policy by the188

ratio of steps taken by expert versus pol-189

icy. Temporal efficiency is defined be-190

tween 0 to 1, and higher is better. This value will be equal to or lower than the packing efficiency.191

This especially penalizes policies that present a ‘looping’ behavior, such as repeatedly open/close192

dishwasher trays, over policies that reach a low PE in shorter episodes (for example, by placing193

most objects in the sink). Fig 7 shows the temporal efficiency or SPL over our 4 main held-out test194

settings.195

D Additional Ablation Experiments196

In Section ?? we presented ablation experiments over number of demonstrations per preference197

used for training, and the number of unique preferences used. In this Section, we present additional198

ablation experiments over the design of instance encodings in TTP. Additionally, we also present199

results where we increase the temporal context of TTP and study its effect on performance.200

D.1 Design of Instance Encoding201

How much does temporal encoding design matter? Fig. 8a shows that learning an embedding202

per timestep or expanding it as fourier transformed vector of sufficient size achieves high success.203

On the other hand, having no timestep input shows slightly lower performance. Timestep helps in204

encoding the order of the prompt states. The notion of timestep is also incorportated by autoregres-205

sive masking in both the encoder and the decoder.206

How much does category encoding design matter? In our work, we represent category as the207

extents of an objects’ bounding box. An alternative would be to denote the category as a discrete208

set of categorical labels. Intuitively, bounding box extents captures shape similarity between objects209

and their placement implicitly, which discrete category labels do not. Fig. 8b shows that fourier210

transform of the bounding box achieves better performance than discrete labels, which exceeds the211

performance with no category input.212

7



(a) Temporal encoding (b) Category encoding (c) Pose encoding

Figure 8: [Left-to-Right] Comparing different design choices of attribute encoders in terms of cate-
gory token accuracy on held-out test prompt-situation session pairs.

How much does pose encoding design matter? We encode pose as a 7-dim vector that includes213

3d position and 4d quaternion. Fig. 8c shows that the fourier transform of the pose encoding214

performs better than feeding the 7 dim through MLP. Fourier transform of the pose performs better215

because such a vector encodes the fine and coarse nuances appropriately, which otherwise either216

require careful scaling or can be lost during SGD training.217

D.2 Markov assumption on the current state in partial visibility scenarios218

Figure 9: Plot showing category level accu-
racy for the held-out test sessions for sin-
gle preference training with context win-
dows. While larger context window size
learns faster, the asymptotic performance for
all context windows converges in our setting.

Dynamic settings, as used in our simulation, can be219

partially observable. For example, when the rack is220

closed, the policy doesn’t know whether it is full or221

not from just the current state. If a new object ar-222

rives, the policy needs to decide between opening223

the rack if there is space, or dropping the object in224

sink if the rack is full. In such partially observed set-225

tings, the current state may or may not contain all the226

information needed to reason about the next action.227

However, given information from states in previous228

timesteps, the policy can decide what action to take229

(whether to open the rack or directly place the ob-230

ject in the sink). With this in mind, we train a single231

preference pick only policy for different context his-232

tory. As shown in Fig. 10, context window of size k233

processes the current state as well as k predecessor234

states, that is, in total k + 1 states.235

Let context history k refer to the number of previous236

states included in the input. Then the input is a se-237

quence of previous k states’ instances (including the238

current state), as shown in Fig. 10.239

Fig 9 shows that TTP gets > 90% category level prediction accuracy in validation for all context240

windows. While larger context windows result in faster learning at the start of the training, the241

asymptotic performance of all contexts is the same. This points to the dataset being largely visible,242

and a single context window capturing the required information. In the future, we would like to243

experiment with more complex settings like mobile robots, which might require a longer context.244
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Figure 10: Processing with previous Context History k

E Limitations and Future scope245

In Section 6, we briefly discussed the limitations and risks. Here we enlist more details and highlight246

future directions.247

Pick grasping depends on accurate segmentation and edge detection Grasping policy depends248

on quality of segmentation and edge detection of the selected object. Due to noise in calibration,249

shadows and reflections, there are errors in detecting the correct edge to successfully grasp the250

object. For example, it is hard to grasp a plate in real setting. Plate is very close to the ground and251

the depth cameras cannot detect a clean edge for grasping. Therefore, in our work, we place the252

plate on an elevated stand for easy grasping. Grasping success also depends on the size and kind of253

gripper used.254

Placement in real setting For placement, the orientation of final pose is often different from255

initial pose and may require re-grasping. The placement pose at final settlement is different from the256

robot’s end-effector pose while releasing the object from its grasp. Similar to picking, placement257

accuracy will largely depend on approperiate size and shape of gripper used. Due to these reasons,258

placement in real world is an open challenging problem and we hope to address this future work.259

Hardware pipeline issues due to calibration The resulting point cloud is generated noisy due to260

two reasons. First, incorrect depth estimation due to camera hardware, lighting conditions, shadows261

and reflections. Second, any small movements among cameras that affects calibration. If we have262

a noisy point cloud, it is more likely to have errors in subsequent segmentation and edge detection263

for grasp policy. Having sufficient coverage of the workspace with cameras is important to mitigate264

issues due to occlusions and incomplete point clouds.265

Incomplete information in prompt The prompt session may not contain all the information to266

execute on the situation. For example, in a prompt session there might be no large plates seen, which267

in incomplete/ambiguous information for the policy. This can be mitigated by ensuring complete268

information in prompt demo or having multiple prompts in slightly different initialization.269
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