A Appendix

A.1 Environment Settings

We choose five out of the nine tasks introduced in CausalWorld since the other four tasks have limited
support for configuring the initial and goal states. Specifically, we enumerate these five tasks here:
(1) Reaching requires moving a robotic arm to a goal position and reach a goal block; (2) Pushing
requires pushing one block towards a goal position with a specific orientation (restricted to goals on
the floor level); (3) Picking requires picking one block at a goal height above the center of the arena
(restricted to goals above the floor level); (4) Pick And Place is an arena is divided by a fixed long
block and the goal is to pick one block from one side of the arena to a goal position with a variable
orientation on the other side of the fixed block; (5) Stacking requires stacking two blocks above
each other in a specific goal position and orientation.

CausalWorld allows us to easily modify the initial states and goal states. In general, the initial state is
the cylindrical position and Euler orientation of the block and goal state is the position variables of the
goal block. These two control variables are both three-dimensional vectors with a fixed manipulation
range. To match the range of each vector, we re-scale the generated initial states.

The reward function defined in CausalWorld is uniform across all possible goal shapes as the fractional
volumetric overlap of the blocks with the goal shape, which ranges between 0 (no overlap) and 1
(complete overlap). We also re-scale the shaping reward to match this range.

We choose the PPO algorithm as our vanilla DRL policy learning method. We list the important
hyper-parameters in Table. 1. We also provide the complete code in the supplementary material.

Table 1: Hyper-parameter values for PPO training

Parameter Value
Discount factor () 0.9995
n_steps 5000
Entropy coefficiency 0
Learning rate 0.00025
Maximum gradient norm 10
Value coefficiency 0.5
Experience buffer size le6
Minibatch size 128
clip parameter (¢) 0.3
Activation function ReLU
Optimizer Adam

Mean episode reward

Episodes Episodes o Episodes @ ’ Episodes * Episodes

(a) (b) (© (@ (e

Figure 4: Compare algorithms with different baselines in all of five tasks. Each learning curve is
computed in three runs with different random seed.

A.2 Curricula Analysis and Visualization

In this section, we analyze the initial state curriculum and goal state curriculum. First, we replace the
initial state curriculum with two different alternatives: (1) M OCRrandrnitState, in Which we replace
the initial state curriculum in MOC with a uniformly chosen state. Other MOC components remains
the same; (2) M OCpizrnitState, in Which we replace the initial state curriculum in MOC with a fixed

13

Mean Episode ¢ oo Mean Episode
Reward Reward

MOCrmmarmior | 9369 (£35) 91% (£05%)
MOChomaGontstare | 9210 (£46) 91% (£0.5%) - (£26) o (£287)

MOC . MOC
(Initial State) 1273 (£11) 100% (0% (Goal State) | /14 (F1D) 68% (£15%)

Success Ratio

(a) Analysis of initial state curriculum (b) Analysis of subgoal curriculum

Table 2: Analysis of initial state curriculum and subgoal state curriculum.

initial state. The other MOC components remains the same. (3) M OCRrandGoaiState, in Which we
replace the goal state curriculum in MOC with a uniformly chosen state. The other MOC components
remains the same. The evaluations are conducted on the reaching task and the results are shown
in Table 2a. From this table, we observe that MOC with initial state curriculum outperforms other
two baseline schemes in terms of mean episode rewards and success ratio. This demonstrates the
effectiveness of providing initial state curriculum. Besides, since “random sampling” outperforms
“fixed initial state”, we conjecture that it is better to provide different initial states, which might be
beneficial for exploration.

In Sec. 5.1, we show that providing multi-objective curricula can improve the training of DRL agents.
To further evaluate the advantages of hyper-RNN base-RNN framework, we conduct an experiment
with Goal GAN, ALP-GMM and MOC with goal curriculum only. We evaluate on reaching task and
the results are shown in Tab. 2b. In this table, we see that MOC Goal State (MOC psemory—,Goalt)s
which is MOC has goal curriculum but doesn’t have memory component, slightly outperform other
two baseline schemes.

A.3 Additional Experimental Results

This section serves as a supplementary results for Sec. 5.

Fig. 5 shows the results of with and without Hyper-RNN in pushing tasks. The results validate the
effectiveness of using Hyper-RNN. It is clear that, the incorporation of memory module consistently
helps the DRL agent outperform other strong baselines in all scenarios. More importantly, in pushing
task, we can observe a 5-fold improvement compared to the method with only the Hyper-RNN
component.

Fig. 5 clearly validate the effectiveness of our proposed method in achieving both the best final
performance and improving sample efficiency.

A.4 Additional Visualizations of States

Figs. 6, 7, 8, 9 visualize the state visitation density in task reaching, picking, pushing and
pick and place, respectively.

From these results, we summarize the following observations: (1) The proposed architecture can
help the agent explore different state spaces, which can be seen in the top row and bottom row. (2)
The ablation study with three independent curricula often leads to exploring three different state
space, as shown in Fig. 7 and Fig. 8. (3) By adding a memory component, the proposed MOC DRL
can effectively utilize all curricula and help the agent focus on one specific state space. This is the
reason why the proposed MOC DRL outperforms the other baselines in all tasks. (4) Comparing
with Hyper-RNN ("no-mem”) and without Hyper-RNN (”independent”), we can see that one of the
benefits of using Hyper-RNN is aggregating different curricula. These can also be found in Fig. 7
and Fig. 8.

14

Pushing
20

10

- ——
-10 /

0.2 0.4 0.6 0.8 1.0
Episodes le7
I MOCMemory‘ — MOC I MOCMemory‘, Goal™*
I MOCMemory‘, Hyper~ —— VanillaDRL MOCpgase-

Figure 5: Comparison of algorithms with and without memory component in pushing. Each learning
curve is computed in three runs with different random seeds.

- =

5 =5 0 5 =5 0 5

=5 0 5 =5

(a) no-mem (early) (b) mem-only (early) (c)independent (early) (d) with-mem (early)

_s5 -5 5 -5
75 [) 5 5 [5 75 0 5 s

5
(e) no-mem (late) (f) mem-only (late) (g) independent (late) (h) with-mem (late)

Figure 6: Visualizations of state visitation density in early and late stages in reaching

15

2
| . 0 0
-2

-25 00 25 5.0 =5 0 5 =5 0 5 =5 0 5

(a) no-mem (early) (b) mem-only (early) (c)independent (early) (d) with-mem (early)

5

5 5 5
0 0
0

-5

=5

=5 0 5 =5 5 -5 0 5 =5 0 5

(e) no-mem (late) (f) mem-only (late) (g) independent (late) (h) with-mem (late)

Figure 7: Visualizations of state visitation density in early and late stages in picking

5 5 5
0 0

-5 5

=5 0 5 =5 5 =5 5 =5 0 5

(a) no-mem (early) (b) mem-only (early) (c)independent (early) (d) with-mem (early)

5
5 5 5

- . W W

-5 -5 -5 -5

-5 -5 0 5 -5 5 -5 0 5

(e) no-mem (late) (f) mem-only (late) (g) independent (late) (h) with-mem (late)

Figure 8: Visualizations of state visitation density in early and late stages in pushing

A.5 Additional Experiment Results

In Sec. 5.1, we compared MOC with state-of-the art ACL algorithms. Here, we add two more
baselines algorithms. The results are shown in Fig. 13:

* InitailGAN [6]: which generates adapting initial states for the agent to start with.

* PPOpReward+: Which is a DRL agent trained with PPO algorithm and reward shaping. The
shaping function is instantiated as a deep neural network.

A.6 PPO Modifications

In Sec. 4, we propose a MOC-DRL framework for actor-critic algorithms. Since we adopt PPO in
this paper, we now describe how we modify the PPO to cope with the learned curricula. We aim to
maximize the PPO-clip objective:

mo(als)
7o, (als)
g(e, AT (s,a))],

Ory1 = argmaxg]ES,anek [min(A% (s,a),

(@)

where
(1+eA A>0
_A =
9(e,4) {(1 —A A<,
where 6 is the parameter of policy 7, 6, is the updated k step parameter by taking the objective above,
A is the advantage function that we define as:

16

| -

5.0

2.5

0.0

=25

-

-5 [

5

-5 0

5

=5 0

5

(a) no-mem (early)

5.0
5 5 e 5
q : |
‘
=25
_s -5 -5
-5.0
=5 0 5 -5 [5 10 =5 0 5 =5 0 5

(e) no-mem (late) (f) mem-only (late) (g) independent (late) (h) with-mem (late)

Figure 9: Visualizations of state visitation density in early and late stages in pick and place

Stacking

Pushing

Reaching Picking Pick_and_Place

| |
eoom
N © o

Mean episode reward
|
o
IS

Mean rpisode reward

|
o
o

-200 g

-400 =20
02 04 06 08
Episodes

02 04 06 08
Episodes

02 04 06 08

02 04 06 08 10
le7 Episodes

02 04 06 08 10
Episodes le7

1.0 1.0 1.0
le7 le7 Episodes le7

MOCgase —— Direct-abstract_curriculum

Figure 10: Comparison between read memory from memory and direct generate abstract curriculum

A(s,a) = Q(s,a) — V(s)

For the Hyper-RNN training, we modify the @) function as Q(s, @, €goal; Crews Cinis Cabs)-

A.7 Bilevel Training

Here we provide more details regarding the bilevel training of Hyper-RNN introduced in Sec. 4.3.
The optimal parameters 0 are obtained by minimizing the loss function Joyter. The key steps can
be summarized as:

Step 1 Update PPO agent parameters 6 on one sampled task by Eqn. 2

Step 2 With updated parameters 6, we train model parameters 6;, via SGD by minimizing the outer
loss function 6} = argming, Jouter-

Step 3 With 6;,, we generate manually designed curricula and abstract curriculum.
Step 4 We give the generate curriculum to the () function and environment hyper-parameters.

Step 5 We go back to Step 1 for agent training until converge.

A.8 Hyper-net

[14] introduce to generate parameters of Recurrent Networks using another neural networks. This
approach is to put a small RNN cell (called the Hyper-RNN cell) inside a large RNN cell (the
main RNN). The Hyper-RNN cell will have its own hidden units and its own input sequence. The
input sequence for the Hyper-RNN cell will be constructed from 2 sources: the previous hidden

17

Pushing Pick_and_place

°
s
‘1’20 0
[V}
s 5
29 //_,/v—fr’_/ﬂ\/
(9]
s —IO/W
«~— " -
[}
= 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Episodes le7 Episodes le7
Pushing Pick_and_place
n 1.0
%]
[V}
9
>
(2]
505 0.5
c
§=]
:
0.0 0.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
le7 Episodes le7
—— MOC —— GoalGAN —— ALP-GMM

Figure 11: Comparison with ACL algorithms. Each learning curve is computed in three runs with
different random seeds.

Reaching Picking Pushing Pick_and_Place 15 stacking
-5
0
-10
/ -5
15
20

20

10

0
_lo/f/v—ls

1200

1000

Mean episode reward

02 04 06 08 1.0 02 04 06 08

1.0 02 04 06 08 1.0 02 04 06 08 10 02 04 06 08 1.0
Episodes le7 Episodes le7 Episodes 1e7 Episodes 1e7 Episodes 1e7
—— MOC —— MOCwemory-,Goal* MOCpase —— MOCuemory-, reward*

Figure 12: Comparison with reward curriculum only.

states of the main LSTM concatenated with the actual input sequence of the main LSTM. The
outputs of the Hyper-RNN cell will be the embedding vector Z that will then be used to generate the
weight matrix for the main LSTM. Unlike generating weights for convolutional neural networks, the
weight-generating embedding vectors are not kept constant, but will be dynamically generated by the
HyperLSTM cell. This allows the model to generate a new set of weights at each time step and for
each input example. The standard formulation of a basic RNN is defined as:

hi = @(Wrhi—1 + Wy + b),

where h; is the hidden state, ¢ is a non-linear operation such as tanh or relu, and the weight matrics
and bias W), € RN»*Ne W, € RV»*Ne h ¢ RN is fixed each timestep for an input sequence
X = (x1,...,27). More conceretly, the parameters W}, W, b of the main RNN are different at
different time steps, so that ~; can now be computed as:

he = ¢(Wh(2n)hi—1 + Wa(zz) + b(2p)), where
Wh(zn) =< Wy, zn >
We(zz) =< Wag, 22 >
b(zp) = Wz + b

3)

18

Reaching Picking Pushing Pick_and_Place Stacking

1250

1000

Mean episode reward

=250

=500
8

4 6 4 6 4 6
Episodes Episodes 1le6 Episodes 1le6

— MOC PPOgeward + — InitialGAN

Figure 13: Comparison with Initial GAN and PPO with reward shaping only.

where W),, € RVeXNuXNe 17« RNeXNaxX Nz 7« RNaXN= o« RN and 2y, 2, 2, € RY=.
Moreover, 2y, z, and z;, can be computed as a function of x; and hy_1:

ilt = ¢(Wi,ﬁt71 + Wiy + 3)
Zn = Whhhtfl + l;fm
Zy = W;miLt_l + ma
2y = WiLbiLt—l
Where W;, € RNVaXNo W, € RNax(NntN2) p € RNi, and W;, , W; W;, € RN=*Ni and

biy, b5, € R”=. The Hyper-RNN cell has N ; hidden units.

“4)

A.9 The abstract curriculum training

For some difficult tasks, we find that it is difficult to train a policy with small variances if the
Hyper-RNN is initialized with random parameters?.

As a simple workaround, we propose to pre-train the Hyper-RNN and memory components in a
slightly unrelated task. In particular, when solving task 7., we pre-train the abstract memory module
on tasks other than 73,.

A.10 The visualization of generated sub-goal

The visualization of generated sub-goal state is shown in Fig. 14. Specifically, the arm is tasked
to manipulate the red cube to the position shown as a green cube. As we can see, MOC generates
subgoals that gradually change from “easy” (which are close to the initial state) to ’hard” (which are
close to the goal state). The generated subgoals have different configurations (e.g., the green cube is
headed north-west in 7000k steps but is headed north-east in 9000k steps), which requires the agent
to learn to delicately manipulate robot arm.

A.11 Hyperparameters

In this section, we extensively evaluate the influence of different hyperparameters for the baselines
and MOC, where the search is done with random search. We choose the reaching and stacking tasks,
which are shown in Fig. 15, 16, 17. For example, in Fig. 15-(a), the first column represents the

3The weight initialization approach [65] designed for hyper-net does not help too much in our case.

19

(a) 1000k steps (b) 3000k steps (c) S000k steps (d) 7000k steps (e) 9000k steps (f) Goal state

Figure 14: Visualization of generated subgoals

different values for outer iterations. A particular horizontal line, e.g., {4,512,5,0.5}, indicates a
particular set of hyperparameters for one experiment. Besides, during the training phase, we adopt
hyperparameters of PPO from stable-baselines3 and search two hyperparameters to test the MOC
sensitivity.

We can observe that: (1) It is clear that MOC outperforms all the baselines with extensive hyperpa-
rameter search. (2) MOC is not sensitive to different hyperparameters.

20

#Outer lters

#Hidden Neurons

(a) Hyperparameter tuning in reaching task.

5 512
5 -
500/
4.8 4
450 -
4.6 -
4.4+ 400 -
4.2 -
350
4
O -
3.8
2504
3.6 59
/
/
3.4 00 |
324
// 150\
//
3
3 128
#Outer Iters #Hidden Neurons
5

5] h
48 -
46 -
4.4 -

4.2

3.8
3.6 -
3.4

3.2

(b) Hyperparameter tuning in stacking task.

GAN Noise Size

GAN Noise Size

GAN Noise Level
0.6

GAN Noise Level

Mean Episode Reward
704

Mean Episode Reward

700

680

660

640

620

600

580

560

540

Mean Episode Reward

Mean Episode Reward

-11.2

-11.4

-11.6

-11.8

-12

-12.2

-12.4

-12.6

-12.8

Figure 15: Hyperparameter tuning results for GoalGAN

21

Buffer Size

3M

3M

2.8M

2.6M -

2.4M -

2.2M -

2M

1.8M -

1.6M -

1.4M +

1.2M

M -
M

Buffer Size

3M

3M

2.8M

2.6M -

2.4M -

2.2M

2M -

1.8M

1.6M -

1.4M -

1.2M +

M -
M

Learning Rate Batch Size Mean Episode Reward
0.01 3000 699.02
0.01 3000
Mean Episode Reward
2800 -
0.008 2600 0
600
2400 - ba
//
/500
0.006 - 200 - / 500
y
//'
2000 /
/
/ 400
0.004 - 1800 - 400
1600 -
300 - 300
0.002 - 400 -
//'
1200)/
/ 2004 200
0.0001 1000 167.54
(a) Hyperparameter tuning in reaching task.
Learning Rate Batch Size Mean Episode Reward
0.01 3000 -9.54
0.01 » 3000 7
/ ~967 Mean Episode Reward
2800 -
3 -9.6
/
/
/
0.008 - /2600 -
/ -938
/
/ 2400 - /<10 -
/ pSes -10
0.006 - / 2200 -
/ -10.2 4
% -10.2
/ 2000 <~
/./
/
0.004 - / 1800 - 104
/
) 1600 - -10.6
/
/ 400
0002 / -10.8
//
/,
/ 1200 -
11 -11
0.0001 1000 -11.08

(b) Hyperparameter tuning in stacking task.

Figure 16: Hyperparameter tuning results for ALP-GMM

22

Discount Factor

0.9998 -

0.9997 -

0.9996 -

0.9994 -

0.9993 -

0.9992 -

0.9991

Discount Factor

Learning Rate

Mean Episode Reward

Mean Episode Reward
1280

1260
1240
1220
1200
1180

1160

(a) Hyperparameter tuning in reaching task.

Learning Rate

Mean Episode Reward

0.9999 300p 7.29
0.9999 - N
N <> Mean Episode Reward
0.9998 -
7.2
- 7]
0.9997 - ~Z
7
0.9996 - 6.8-
6.8
0.9995
6.6
. 6.6
0.9994 -
6.4
0.9993
///
6.2
0.9992 | e
2200 -
1 6
0.9991 - 6
0.999 £~
0.999 200u 5.81

(b) Hyperparameter tuning in stacking task.

Figure 17: Hyperparameter tuning results for MOC

	Introduction
	Related Work
	Preliminaries
	Learning Multi-Objective Curricula
	Manually Designed Curricula
	Abstract Curriculum with Memory Mechanism
	Bilevel Training of Hyper-RNN

	Experiments
	Comparing MOC with state-of-the-art ACL methods
	Ablation Study

	Limitations
	Appendix
	Environment Settings
	Curricula Analysis and Visualization
	Additional Experimental Results
	Additional Visualizations of States
	Additional Experiment Results
	PPO Modifications
	Bilevel Training
	Hyper-net
	The abstract curriculum training
	The visualization of generated sub-goal
	Hyperparameters

