A Additional results

A.1 Ablation study

Table 6: Ablation study results.

Method Lored Lplan Letr | ADE (m)] NLL (nats) | | Planning Loss | Hindsight Cost |
x100 x10%2 x103 | £ Std. Err. £Std.Err. | x1072, £Std.Err. x 102, +Std.Err.
No prediction - - 0.00 £ 0.00 0.00 £ 0.00
Standard 1 0 0 |1.32+£0.06 0.42+0.04 —3.76 £ 0.23 —1.61+0.05
DiffStack (default) 1 1 1 1.27 £0.07 0.38+0.05 —5.13+0.18 —1.86 +0.04
DiffStack (no Cplan) 1 0 1 1.334+0.08 0.48£0.16 —4.98 £0.11 —1.86 £0.04
DiffStack (no Letr) 1 1 0 [1.48+0.21 0.5540.15 —5.244+0.10 —1.85+0.06
DiffStack 1 5 5 1.64 £0.17 0.8540.08 —5.53 £0.07 —1.89 +£0.03
DiffStack 1 0.2 0.2 |1.284+0.04 0.66+0.19 —4.79 +0.18 —1.814+0.02
GT prediction - - —7.56 + 0.00 —2.254+0.00
No pred. (no plan.) - - - 0.0 £0.00
Standard (no plan.) 1 - 0 1.274+0.06 0.31+£0.19 - —1.8+0.23
DiffStack (no plan.) 1 - 1 1.40 £0.15 0.194+0.40 - —2.0£0.23
GT pred. (no plan.) - - - —2.6+0.00
No pred. (no contr.) - - 0.00 £ 0.00 0.0 +£0.00
Standard (no contr.) 1 0 - | 1.234+0.02 0.56+0.22 —4.08 +0.27 —-1.14+0.03
DiffStack (no contr.) 1 1 - 1.46 +0.18 0.53+0.13 —5.29£0.10 —1.2+0.01
GT pred. (no contr.) - - —7.56 £ 0.00 —1.5+0.00
No pred. (At=0.1) - - 0.00 £ 0.00 0.0£0.00
Standard (At=0.1) 1 0 - | 1.234+0.02 0.56+0.22 —5.65 + 1.67 —2.1£0.06
DiffStack (At=0.1) 1 1 - |1494+0.12 0.88+0.27 | —14.01 +0.63 —2.4+0.05
GT pred. (At=0.1) - - —25.11+0.00 —2.94+0.00

We present results for an ablation study in Table 6. The table is divided into sections in which decision
making metrics are comparable. Decision making metrics are not comparable across sections because
of the different configuration of the stack and a different criteria for rejecting samples from the
validation set. Each section reports planning loss and hindsight cost relative to a No prediction
baseline, and we report relative results for a GT prediction oracle, same as before. In rows of the
table we train stacks with different weighted sum of losses, £ =0 Lpred + a2 Lplan + 3Lty The
second to fourth columns indicate the «; parameters.

In the first section of Table 6 we compare DiffStack trained with different weighted combination
of losses. We observe similar improvements when using only the control loss or only the planning
loss. The relative weight of the prediction loss vs. the downstream decision making losses behave as
expected: the higher/lower the weight for the downstream planning and control losses the more/less
planning and control metrics improve at the expense of slightly worse/better raw prediction metrics.

In the second section we remove the planner module, and initialize the control algorithm with a zero
control sequence. In the third section we remove the control module and use the output of the planner
as the final ego trajectory. In the last section we change the planning and control time resolution from
At=0.5s to At=0.1s. We observe similar trends in terms of improvement from DiffStack in all
cases. In terms of absolute metrics we observe a benefit for using both the planning and the control
modules (not shown in Table 6).

12

A.2 Learned control cost experiment

Table 7: Detailed results for the control cost learning experiment.

Cost weights | w} (Ceon) wh (Cy) wh (Ce) wh(Cey) wh(C,) o | PlanningLoss) MSE (m?) |

Hand-tuned 5.00 0.50 0.30 0.30 1.00 1.00 2.67 0.38
Learned 5.00 0.68 0.36 0.43 0.63 1.10 241 0.32

We report detailed results for the control cost learning experiment in Table 7. Values are averages
over 5 training seeds. All standard errors are <0.01 (omitted).

We first train a prediction module (as before), then we train for an additional 20 epochs allowing
DiffStack to update the weights w; of the control cost (3) by backpropagating gradients from the
final control loss L. =Lysg. We do not use a planning loss Lp1an. For practical reasons we
reparameterize the cost function such that the weights always sum to a fixed constant, and the
total cost is multiplied with a scaler «.. Specifically, the cost weights are given by w; = aw}, and
wi=cexp (i)/ D e1.5 €xp (1;). Here v and ¢); for i €2:5 are trainable parameters, c is a constant.
To ensure safety we fix 1)1, the weight parameter for the collision term C¢,);. We initialize all
parameters, ;, «, ¢ such that the default hand-tuned weights (shown in row 1) are recovered.
Compared to the default hand-tuned weights (row 1), DiffStack significantly decreases plan MSEs
(row 2). The resulting learned weights are lower for the control effort term, and higher for the goal
and lane keeping terms. We observed similar results when freezing the prediction module while
learning the cost weights.

13

B Motivation for planning-aware prediction models

a b

l’ Q -
=) -
1
1 1
]
9 Pedestrian @ ‘el — Harmless
i —— Dangerous
Ego-Vehicle
Himan Driver — Ground Truth
Ego-Vehicle

Human Driver
_ Resulting Ego-

Motion Plan
Figure 4: Not all predictions are equally important. (a) The motion of a jaywalker in front of the
ego-vehicle is more important than a far-away vehicle. (b) Metrically-equal prediction errors can
have severe consequences; incorrectly predicting that a vehicle will not stop at an intersection may
trigger a dangerous evasive maneuver in the planner. The visualization was inspired by [27] and the
figures include similar graphical elements.

14

C DiffStack implementation details

C.1 Planning module details

The planner generates trajectory candidates by first sampling a set of lane-centric terminal states. We
consider all lanes that are within 4.5m from the ego goal g, and the heading difference between the lane
and ego goal state is less than 90°. For all lanes we generate a set of terminal states based on distance
traveled along the lane for a set of fixed acceleration values a € {—3,—2,—1,—0.5,0,0.5,1,2}m/s?
and lateral lane offsets £, in {—0.5,0,0.5}m. We then fit a cubic spline from the current state to the
terminal state that minimizes mean control effort, and drop the dynamically infeasible trajectories
given the control limits of the ego vehicle.

C.2 Control module details

The iLQR algorithm iteratively forms and solves a quadratic LQR approximation of the problem
around the current solution s(*), (*) for iteration i, using a second-order Taylor approximation of the
cost function C, and a first-order Taylor approximation of the dynamics function fjq.

In each iLQR iteration we are solving an LQR problem. The solution of the LQR problem is a
control sequence which we use as a candidate for a potential trajectory update. Note that the LQR-
optimal control sequence is only optimal according to the approximated quadratic cost, and does
not necessarily improve the cost for the original non-quadratic problem. Therefore we perform a
line-search for the largest change in control sequence in the direction of the LQR-optimal controls that
results in a reduction in the original cost. We start with a down-scaling factor of 1 for the change in
controls, unroll controls through the dynamics function, and evaluate the original non-quadratic cost
for the resulting trajectory. If this cost is larger than the cost of the unchanged trajectory, we decrease
the down-scaling factor by a factor of 5 and repeat the search process up to 5 times. Otherwise
we update the trajectory and move on to the next iLQR iteration, which makes a new quadratic
approximation around the updated trajectory.

We continue iLQR iterations until convergence or up to 5 iterations. Convergence is defined by a
threshold (0.05) on the change in control vector magnitude between iterations.

C.3 Cost function details

The cost function is a weighted sum of a set of handcrafted cost terms for penalizing collisions,
distance to the goal, lateral lane deviation, lane heading deviation, and control effort:

C(sw) = w1Ceon(s, 8aca) + w2l (s, g9) +w3Cei(s,m) +wsCos(s,m) + wsCy(u).
The cost function terms are defined as followed:

P ~(t ..

* ClonlssSuct) = o Tcrir @ (Diere mulls) - 84]12). the collision term, where
34,k 1s the k-th mode of the predicted trajectory distribution for’agent a, 7y, is the probability
of the k-th mode, ¢ is a Gaussian radial basis function, and || - || is the Euclidean norm. The
collision term encourages keeping distance from other agents in expectation.

» Cy(s,9) = ||s'T) — g||?, the goal term, that captures the distance to goal at the end of the
planning horizon. We choose the goal g to match the “ground-truth” ego trajectory in the
dataset.

* Cri(s,m) = Y ,cr.p|ls" — s¢,.1]]?, the lateral lane deviation term, where s, is the
position on the lane closest to the ego position s.

* Cre(s,m) =3, c.p (hl — hy)?, the lane heading deviation term, where k. and h, denote
ego vehicle heading and lane heading, respectively.

« Culu) =3 ,crr ((ugiler)Q + (ugtc)c)Q), the control effort term, where teer denotes the

steering control and u,.. the acceleration control.

The default weight terms are chosen manually as follows: w;=5.0; w2=0.5; w3=0.3; w4=0.3; w5=1.0.

15

D Experimental setup details

D.1 Dataset details

We use the nuScenes dataset which contains a large amounts of driving data, 1000 scenes with
annotated states for vehicles and pedestrians, and a map containing lane information. The data
is collected in Boston and Singapore. Scenes are 20s long, and trajectories are recorded at 2Hz
(At=0.5s). We process the dataset into train and test scenarios. Each scenario has H =4s of state
history and T'=3s of GT future states for all agents. We choose one vehicle in the scene to act as
the ego vehicle, and one vehicle to perform prediction for, such that ego and the predicted vehicle
are close. For simplicity we use the GT futures for other agents for the purpose of planning. We
train models with 75% of the training split, and use the remaining 15% as a validation set. We skip
data with insufficient annotations to form a scenario, and where our planner has less then 2 trajectory
candidates.

D.2 Training details

We train all models for 20 epochs using the Adam optimizer with gradient clipping, batch size of
256, learning rate of 0.003 by default. We have not performed extensive search over these training
parameters. When training for multiple objectives, L= Lpred + @2Lplan + @3Lctr, We use the
following default loss scaling parameters: «;=1, as=100, a3=1000 for reinforcement learning
experiments, and a1=1, as=10, a3=1000 for imitation learning experiments. We choose the default
values such that the average magnitude of the resulting gradients are similar, followed by a simple
hyperparameter search on the validation set with a different, fixed random seed. We explore the effect
of the o; loss scaling parameters in an ablation study presented in Table 6.

D.3 Closed-loop simulation details

In our log-replay simulation setup ego states are unrolled based on the planned control outputs,
while non-ego agents follow their fixed trajectories recorded in the dataset, and replan every 0.5s.
We create Ty;,,, = 10s long evaluation scenarios, one for each scene in our validation set. In each
step of the simulation we run the stack to get control commands, update the ego state based on the
control command and the known dynamics, and update non-ego agent states according to their logged
trajectories in the dataset. The goal and lane inputs for planning are updated in each simulation step
based on the logged ego trajectory. For simplicity in the stack we only perform prediction for the
most relevant non-ego agent, and ignore all other agents during planning and control. We consider all
agents when computing evaluation metrics.

16

	Introduction
	Related work
	DiffStack: A Differentiable and Modular Autonomous Vehicle Stack
	DiffStack modules
	End-to-end training

	Experiments
	Experimental setup
	Open-loop results
	Closed-loop evaluation

	Limitations & Conclusions
	Additional results
	Ablation study
	Learned control cost experiment

	Motivation for planning-aware prediction models
	DiffStack implementation details
	Planning module details
	Control module details
	Cost function details

	Experimental setup details
	Dataset details
	Training details
	Closed-loop simulation details

