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A Evo-NeRF1

A.1 NeRF and scene parameters2

We use the default Instant-NGP parameters except for the following changes: (1) we use a learning3

rate of 0.02 instead of 0.01 (2) we use a hash table size of 217 feature vectors instead of 219 (3) we use4

a density network with 16 hidden neurons instead of 64. These changes made small improvements5

in geometry learning speed. We also increase the frequency of extrinsic optimization gradient steps6

(n steps between cam updates parameter) to every step, improving the speed of convergence on7

noisy camera poses added during arm motion. The scene bounds (“aabb scale”) are set to a 2 meter8

cube to fit the entire workspace inside, with a scene scale of 1.0. We set the near distance for9

raymarching during NeRF training to be 0, to avoid missing objects if they are close to the camera.10

A.2 Capture trajectory11

The full capture trajectory is centered at the center of the workspace, with θ values ranging from 85◦12

to 75◦ (θ rotates about the z axis upwards from the table, such that x points away from the robot).13

The ϕ range, which describes inclination from the table surface, goes from 15◦ to 50◦. The arm14

makes 3 sweeps about the z axis, linearly varying the ϕ value between the range on each sweep, as15

visualized by the red arrow in Fig. 1. We use 1280x720 images, with a whitebalance and exposure16

which are held static after an auto-calibration from the camera.17

A.3 Evo-NeRF parameters18

For TV-regularization, we sample N = 256000 points at each iteration with a rejection sampling19

threshold of 0.01 for minimum local density. The sampling radius r we use is 0.3mm, and the loss20

scaling λtv is 15
N . TV-loss is implemented as a set of CUDA kernels for speed, resulting in only about21

a 10% slowdown of training. To implement coarser ray sampling, the value of the parameter which22

controls sample acceleration, (“cone angle constant” in Instant-NGP) is 0.04, up from the default23

value of 0.004.24

B Dataset generation25

We choose the 7 object meshes based on the three criteria: (1) likely to be made of glass, (b) fit26

within the workspace of YuMi, (c) has a watertight mesh with outward-facing surface normals.27

For grasp generation, we calculate the stable pose orientations of each mesh and rank them by their28

quasi-static probabilities using Trimesh [1]. Based on the ranking, we select the top 10 stable poses29

to sample 1000 grasps. We ignore stable poses where no grasp exists. We analytically calculate30

grasp success via robust wrench resistance [2]. We perturb the grasp pose with small translation31
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Figure 1: Random worksurace texture (left) and glass texture (right) in blender. We use textures to randomize
the background and simulate imperfection in glass.

noise (from a normal distribution with µ = 0, σ = 0.003m) and small rotation noise (from a normal32

distribution with µ = 0, σ = 0.003 rad) and calculate wrench resistance on 10 samples for estimat-33

ing the grasp success probability. We create multi-object scenes based on single-object scenes. To34

do so, we sequentially sample objects on different stable poses and randomly generate a SE(2) trans-35

form that will not collide with the objects that have already been placed on the planar surface. We36

define the z–axis as normal and pointing outward from the worksurface. We sample x and y posi-37

tion from a uniform distribution between ±0.2m and the z–axis rotation from a uniform distribution38

between ±π
2 . We reuse the grasps sampled for single object scenes and filter out the grasps that are39

in collision. We check collision between objects and grasps with the Flexible Collision Library [3].40

We meshify the grasps for collision checking by using a YuMi gripper mesh model under the rigid41

transform given by the grasp pose.42

To reflect the reachable workspace of the robot for capturing images, we record the camera intrinsics43

and 52 camera poses along the image capture trajectory with the physical robot. We use fewer views44

during dataset generation than physical capture trajectories to speed Blender rendering. For each of45

the simulated environments, we render images at the recorded camera poses with small translation46

noise (±5 mm) and rotation noise (±5◦). We randomize the number of lights between 1 and 5, light47

location, and total wattage. To speed up rendering, we reduce the numbers of rays cast to a minimum48

level to achieve realistic renders, and use CUDA-based renderer in Blender.49

To randomize background and simulate real-world imperfections found in glass, we use two textures50

in Blender (Fig. 1). We use a randomized texture for the background consists of two blended random51

“Voronoi” nodes to produce both high and low frequency patterns. For the glass texture, we create a52

transparent material with an index of refraction that matches glass and many plastics. We also add53

random textures to simulate hazy glass and scratches. Prior work observed that NeRF performed54

better on real-world glass than simulated glass, observing that simulated glass had no imperfections.55

We then train a NeRF model for each scene for 1000 steps, comparable to the number used on56

the robot in real-time, and render depth images from NeRF. We also generate ground-truth depth57

images using Pyrender [4] for each scene, using the same camera extrinsics as the NeRF rendered58

depth image. In experiments, each scene has between 1 and 3 objects and there are a total of 866759

distinct scenes, 237 held out as a test set.60

C Rad-Net61

C.1 Depth rendering62

When rendering depth from NeRF, we use a minimum transmittance threshold of 0.9, which means63

that rays which have passed through a total of 0.1 density terminate. This extra sensitivity is to allow64

perceiving depth from transparent objects. Because density has physical meaning, in practice the65

value of this parameter is reusable across all scenes, in our experience not requiring tuning. During66
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Objects DexNet Rad-Net
Early Stop Full Capture Early Stop Full Capture

Wineglass Upright 0/3 3/3 3/3 3/3
Whiskey Glass 0/3 1/3 3/3 3/3

Wineglass Sideway 0/3 2/3 2/3 2/3
Plastic Cup 0/3 0/3 3/3 3/3

Bowl 0/3 2/3 3/3 3/3
Tape Dispenser 3/3 3/3 1/3 2/3
Square Bowl 0/3 1/3 3/3 3/3

Tall Glass 0/3 3/3 3/3 3/3
Light Bulb 0/3 0/3 3/3 2/3

Average 11% 56% 89% 89%
Table 1: Detailed single object retrieval results. For each object, the experiment is repeated 3 times. The
number show the success grasps out of the 3 grasps. The last row show the average success grasp over all
objects. Note that all of Rad-Net’s failures come from the sideways wineglass, tape dispenser, and lightbulb.
The latter two suffer in performance because they are highly out of distribution shaped objects, and the former
experiences a 66% success rate because grasp precision is much more important for grasping the stem or base,
where a small pose error can knock the wineglass out of position.

depth rendering we ignore density which exists more than 35cm above the workspace surface, a67

value 2x larger than the largest test object, to help in removing floaters far above the scene.68

C.2 Architecture details69

The architecture we use is identical to Zhu et al. [5], except for adding an additional fully-connected70

layer at the output of the rotation prediction network to be more agnostic to input patch sizes. The71

location prediction network uses an equivariant U-Net architecture, and the rotation network is a72

9-layer equivariant ResNet. The rotational equivariance operates on the cyclic group C8 for the73

location prediction network and on the quotient group C16/C2 for the rotation network as top-down74

grasp rotation is invariant to rotations by π radians.75

C.3 Training details76

We use PyTorch Lightning for training, with a batch size of 64 for the rotation network and 32 for77

the location network. We use the Adam optimizer with learning rate 1e-3 and weight decay 1e-5.78

Models are trained for 100 epochs with an exponential learning rate decay of 0.994. The patches79

used as input to the rotation network are augmented by 5 pixels of random translation, and the80

location depth images are augmented by 10% translation, ±5◦ shear, and a scale range of 80% to81

100%.82

D Additional result details83

D.1 Single object84

Table 1 reports the per-object success for Rad-Net and Dex-Net on early-stopped and full capture85

trajectories, along with a discussion of their implications in the caption.86

D.2 Decluttering87

Table 2 reports per-scene success for all scenes for Dex-Net and Rad-Net on Evo-NeRF as well as88

training NeRF from scratch, along with a discussion of the results in the caption.89

D.3 Upside down glasses90

In all of our experiments we test on graspable, upright objects. So, a natural question is whether Rad-91

Net has learned a trivial grasp function, like grasping at the edge of any round object. To answer this92
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Scene (N objects) Dex-Net, NeRF updated Rad-Net, NeRF from scratch Rad-Net, NeRF updated
0(4) 1,4,3 4,4,4 4,4,4
1(5) 1,4,2 3,4,4 4,4,4
2(4) 1,3,4 3,4,0 0,3,3
3(4) 1,3,0 2,4,2 3,3,3
4(5) 2,3,3 4,3,2 4,2,4
5(4) 1,1,1 4,4,4 3,2,3

Table 2: Detailed decluttering results. Each scene is repeated 3 times and the method is given as many grasp
attempts as the number of objects. Numbers in the parenthesis show the number of objects in this scene.
Numbers in the table show the number of objects extracted after all actions finish (higher is better). Scene 2
seems to be an outlier in performance for Rad-Net, with 2 runs where no objects were cleared. This is due to a
specific wineglass which Rad-Net consistently collided with during grasps, resulting in an early failure for the
trial.

Figure 2: Heatmap output for objects including upside-down glasses. In this scene the top 3 objects are upside-
down (and hence ungraspable) and the bottom 3 are graspable. The left image shows depth rendered from
NeRF and the right image shows the location heatmap output by Rad-Net. Note how the heatmap activates
much less on upside-down objects (<15% confidence) compared to graspable glasses (80% confidence).

question we explore what Rad-Net outputs on ungraspable, upside-down objects to sanity check its93

output. To do this we run a decluttering task with 3 upright and 3 upside down glasses, and inspect94

the confidence outputs on upside down glasses compared to upright. Given 3 actions, the system95

correctly removes the 3 graspable glasses and leaves the upside-down ones untouched. Fig 2 shows96

Rad-Net’s output on this scene before the first grasp. Although the upside down glasses have ring-97

like heatmap outputs similar to upright cups, the highest activation on upside down glasses is 15%,98

which suggests that Rad-Net seems to have learned a non-trivial grasp function. Ideally, confidence99

on impossible grasps would be near 0, a shortcoming that could perhaps be a result of an imbalanced100

dataset, where more objects are upright than upside down. Cultivating a dataset with equal numbers101

of graspable and ungraspable poses could address this issue.102
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