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1 Training Details and Experimental Settings

Training process. The training process is as follows: 1. The agent builds a graph map, which can
be incrementally updated based on the observation. 2. Extract latent contextual representation from
memory generated from a graph map using the attention method. 3. Extract the action by putting the
attended memory, current observation, and prior action into the action policy function. 4. The action
is first optimized with imitation learning with oracle action, and then the agent learns more suited
for the environment through reinforcement learning.

Implementation details. Baselines and the proposed method, excluding the methods that do not
use training [1], are trained using imitation learning with 14,400 episodes, 200 episodes per scene
for 72 training scenes. Then, reinforcement learning is applied for 10M frames to fix erroneous
behaviors by interacting with simulation environments. The cross-update is carried out twice for both
graphs since we wanted to update nodes using updated nodes while utilizing the least computational
costs.

Figure 1: Clearpath Jackal

Real robot experiment settings. We implement TSGM on a
Clearpath Jackal platform for a real-world setting. Jackal is
equipped with a single Ricoh Theta V camera, a 360° RGB sensor.
Since this camera collects images with equirectangular projections,
the equirectangular image is converted into a panoramic image of
the 12 pinhole cameras having 30° FoV which is used for train-
ing. Since it was found that getting the exact panoramic depth is
challenging, depth was extracted from the pretrained depth estima-
tor, using the Omni-Depth [2] algorithm for the real-world experi-
ments. Omni-Depth [2] estimates depth from panoramic RGB im-
ages gathered from indoor datasets such as Matterport dataset [3].
We utilized the same test simulator environment for training and
testing the depth estimator since we assumed a very accurate depth
input was given. To control the Jackal, we use a PD controller.

Episode settings. Gibson dataset is divided into 72 train scenes
and 14 test scenes for image goal navigation. The test episodes in
the Gibson dataset are derived from 14 test scenes that do not over-
lap the training scene. The test episodes for Table 1 of the paper are
proposed in VGM [4]. The number of episodes for each difficulty
is 1,007, totaling 3,021 episodes. Since episodes with similar beginning and end points might be
chosen as duplicates if the scene is tiny, the number of test episodes was chosen in proportion to the
scene’s size.

The test episodes used in Table 2 of the paper are proposed in NRNS [1], which are divided into
two types: straight and curved. The ratio of shortest path geodesic-distance to euclidean-distance
between the starting and target locations in straight episodes is 1:2, and the rotational difference
between the start position and destination is 45°. All other start-goal location pairs are labeled as
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curved episodes. There are 2,806 straight episodes and 3,000 curved episodes in total. Similar to
the episode configuration used in Table 1, there are around 1,000 items divided according to the
difficulty level.

Similarity thresholds. Two pretrained encoders are used to determine whether to add or update
the graph with a new observation when building TSGM. We adopt PCL [5] to obtain image sim-
ilarity and Supervised contrastive learning [6] d to train object similarity. We apply the pretrained
PCL [5] model and set the image similarity threshold (τi) to 0.75. We trained the model [6] for ob-
ject similarity utilizing provided identity values for objects on Gibson train environments as labels.
After training, the object threshold is chosen to distinguish objects with the greatest margin of error
when tested on the Gibson test scene. To evaluate the trained object encoder, we apply clustering
metrics, normalized mutual information (NMI) and purity. NMI is calculated by taking the mutual
information between the true object identity distribution and the estimated distribution and then nor-
malizing the value by the self-information of the two distributions. Furthermore, purity is defined
as the number of majority positives divided by the total number of samples. With 0.839 NMI and
0.878 purity, the trained object encoder performed well in predicting object identifications on the
clustering measures. As a result, the object threshold (τo) is set as 0.8 for all experiments.

2 Graph Memory Construction

When an agent is placed in an unknown environment, the agent explores the environment to acquire
a graph memory. The graph memory is constructed using two pretrained encoders: an image encoder
encim and object encoder encobj . To improve the graph with common objects, we add a rule that
prevents adding a new image node if the ratio of the number of common objects of the two image
nodes is larger than 10%,

CO(xm, xt) =
#(O(xm) ∩O(xt))

#(O(xm) ∪O(xt))
> 10%, (1)

where O(xm) represents the objects connected to the image node xm. The detailed algorithm for
building a topological semantic graph is described in Algorithm 1.

Object node. Object features are retrieved using ROI-align [7] based on the position of the object
bounding box. The object features are extracted from the output of the conv4 layer of ResNet18.
The object category from the detector is encoded with two-layered neural networks and then con-
catenated to the object features to make an object node state zk = 〈Fo

k , ck, rk〉 for kth object. Fo
k

is the extracted object feature, ck represents the category of the object, and rk is the detection score
of the object. The number of categories is 80 since we employ a detector that is pretrained on the
COCO dataset.

Object node updating rules. The graph builder compares the object’s detection scores when the
same object node is found. If a new input object’s feature is similar to an object in memory and
the category is the same, the graph builder determines that the two objects are identical. The graph
builder compares the detection scores to increase the detected features’ quality. Only when the newly
discovered object has a higher score, the graph builder updates the node feature.

Graph connections. While building the graph, the affinity matrices can be calculated based on
the edge information,

Aim[xv, xw] = 1 ∀(xv, xw) ∈ Eim,
Ac[xv, zk] = 1 ∀(xv, zk) ∈ Ec.

(2)

To make objects in proximity connected in the graph memory, we calculate the affinity matrix for
object nodes to be connected to objects in the neighbors of the current image node using the image
affinity Aim and image-object affinity. The object graph affinity matrix can be calculated using the
above matrices,

Aob = AT
c (Aim + I)Ac, (3)

where I is an identity matrix, which connects the object nodes that share the same image node.
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Algorithm 1: Build Topological Semantic Graph Memory
Input: Sequence of the input images, B
Output: Topological semantic graph, G

1 Initialize empty vertex set, Vim ← ∅ , Vob ← ∅
2 Detect objects from the input image, z1 ← Detector(I1)
3 Initialize the last localized image, Il ← I1
4 Initialize the neighboring objects Ol ← z1
5 Let F i

l ← encim(Il); xl ← 〈F i
l 〉

6 for It ∈ B, each observation in the batch, do
7 Encode image, F i

t ← encim(It); xt← 〈F i
t 〉

8 if current place is where an agent already explored, i.e., ∃xm ∈ Vim s.t.
cos dist(F i

m,F i
t ) ≥ τi and CO(xm, xt) > 10%, then

9 Update the most similar image node in the memory using new feature:
10 k← argmaxmcos dist(F i

m,F i
t )

11 F i
k ←F i

t
12 Connect the kth node to the last localized node:
13 Eim ← Eim ∪ (xk, xl)
14 end
15 else if It is new, i.e., cos dist(F i

l ,F i
t ) ≤ τi or t=0, then

16 Add xt, which is 〈F i
t 〉 to the graph G:

17 Vim ← Vim ∪ {xt}
18 Eim ← Eim ∪ (xt, xl)
19 Update the last localized image node:
20 Il ← It
21 Detect objects from the input image, zt ← Detector(It)
22 Sort objects by detection scores.
23 for ∀bk ∈ zt, each object in the current observation, do
24 Encode objects, Fo

k ← encobj(bk)
25 if bk exists in the neighboring objects Ol, i.e., ∃zm ∈ Ol s.t. cos dist(Fo

m,Fo
k )

≥ τo and ck = cm and rk > rm then
26 Update the most similar object node in the Ol using new feature:
27 k← argmaxmcos dist(Fo

m,Fo
t )

28 Fo
k ←Fo

t

29 end
30 else if Input object is new according to the neighboring objects, i.e.,

cos dist(Fo
m,Fo

k ) ≤ τo, ∀bm ∈ b̂n or ck 6= cm, then
31 Add the object state zk, which is 〈Fo

k , ck, rk〉 to the graph G:
32 Vob ← Vob ∪ {zk}
33 Ec ← Ec ∪ (xl, zk)
34 end
35 end
36 Ol ← 〈zt, Neighbor(zt)〉
37 end
38 end
39 G ← {Vim,Vob, Eim, Ec}
40 return G

3 Cross Graph Mixer

The cross graph mixer module runs for L steps and is defined in terms of a message function M
and vertex update function U . The message function can be seen as a composition of two functions,
M = C ◦ S, where S is the self-update function, and C is the cross-update function. At first, the
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image memory state x and object memory state z are the inputs of the network,
hi1v = xv,∀v ∈ Vim
ho1k = zk,∀k ∈ Vob.

(4)

For lth step, where l ∈ {1, ..., L}, image and object node states are self-updated to get contextual
representations between nearby locations or objects,

m̂i
l

v =
∑

w∈Ni(v)

Sl
i(hi

l
w, Aim, g),

m̂olv =
∑

k∈No(v)

Sl
o(ho

l
k, Aob, g),

(5)

where Ni(v) and No(v) denote the image/object neighbors of the vth node, respectively. The self-
update message function S makes a d dimensional vector by aggregating connected nodes, i.e.,

Sl
i(hiw, Aim, g) = Aim[v, w]Bl

i(evw)fi(hi
l
w||g)

Sl
o(hok, Aob, g) = Aob[v, k]Bl

o(evk)fo(ho
l
k||g),

(6)

where || is a concatenation operation and fi and fo are two-layered neural networks. Here, B(evw)
is a learned connection relationship between vth and wth nodes, i.e., the edge vectors between the
nodes, which maps the edge vector evw to a di × di matrix,

Bl
i(evw) = vTi concat(Wihi

l
v,Wihi

l
v)

Bl
o(evk) = vTo concat(Wiho

l
v,Woho

l
k),

(7)

where Wi ∈ RC×di , vi ∈ R2di×di , Wo ∈ RC×do , vo ∈ R2do×do×do are the matrix parameters,
which are applied for all latent nodes.

Then, the nodes aggregate the different types of nodes during the message passing phase to make a
complete message milv and molv . For this, nodes cross update is done for image nodes to aggregate
messages from object nodes, while object nodes use image nodes to create messages,

milv =
∑

k∈No(v)

Cl
i(m̂i

l

v, m̂o
l
k, Ac),

molv =
∑

w∈Ni(v)

Cl
o(m̂o

l
v, m̂i

l

w, Ac),
(8)

where

Cl
i(m̂i

l

v, m̂o
l
k, Ac) = m̂i

l

v + f ′i(Ac[v, k]Bl
i(evk)f

′′

i (m̂o
l
k||g)),

Cl
o(m̂o

l
v, m̂i

l

w, Ac) = m̂olv + f ′o(Ac[w, v]Bl
o(ewv)f

′′

o (m̂i
l

w||g)),
(9)

where f ′o, f ′i , f
′′

o and f
′′

i are two-layered neural networks.

Finally, the update function U transfers messages from object nodes to image nodes,
hil+1

v = U l
i (hi

l
v,mo

l
v),

hol+1
v = U l

o(ho
l
v,mi

l
v),

(10)

where,
U l
i (hi

l
v,mo

l+1
v ) = hilv + gi(Ac[·, v]mol+1

v ),

U l
o(ho

l
v,mi

l+1
v ) = holv + go(Ac[v, ·]mil+1

v ),
(11)

where gi is a neural network that maps hidden states of an object to hidden states of the connected
images and go is a neural network that maps hidden states of an image to hidden states of the
connected objects.

After L iterations, the output of the network become a contextual memory. The output of the image
stage is,

miv = hiLv ∀v ∈ {1, ..., N},
mok = hoLk ∀k ∈ {1, ...,M}.

(12)

Note that mi = {mi1, ...,miN} is the contextual image memory and mo = {mo1, ...,moM} is the
contextual object memory.
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Figure 2: Correlation between the object score and image score. It indicates that the object nodes
help image nodes to localize to the current node.

4 Object-Based Methods

We compared TSGM to navigational methods [8, 9] that employ object information. In VTNet [8],
an image and objects observed by an agent are combined to produce a fused representation of the
place. VTNet [8] does not have any explicit memory and only has an implicit RNN memory. TSGM,
on the other hand, can explicitly employ previous knowledge gathered while navigating the environ-
ment. VTNet [8] connects object information when they are detected in the same image. Since it
combines objects detected in the same image, VTNet [8] can be seen as a method that only connects
objects detected in the same image. On the other hand, TSGM can connect neighboring object nodes
even if the objects are not detected in the same image, resulting in contextually solid representations.

In Object memory transformer [9], image and object representation are saved in the explicit memory
every time step. Since TSGM only puts a new node into a graph memory based on the similarity
between memory and current observations for both image and object graphs, it has less redundancy
than [9]. [9] utilizes only the preceding T chunks of data are utilized. TSGM, on the other hand,
makes use of all graph memory information derived from past exploration of the environment. This
is achievable due to TSGM’s low redundancy.
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Figure 3: Attention scores of the image and object nodes.
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Figure 4: Comparison with the method without objects. The stop button can be pressed more pre-
cisely through the object context.
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Figure 5: Comparison with the method without objects. The agent can utilize object configurations
to get the semantic knowledge how to go from the bathroom to living room.
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5 Impact of Landmarks

Object helps localization. To demonstrate the influence of object information on performance
improvement, we conducted additional experiments using attention values from the memory atten-
tion module (Section 3.4). The agent draws the best image memory in the memory attention module
given the current observation. We assume that localization is successful if the selected image node,
which has the highest attention score, is the closest to the agent location. The success rate of local-
ization is computed using the 1,007 hard episodes, which are used in Table 1 of the manuscript. As a
result, localization performance is 38.5% without an object node whereas it is 68.2% with an object
node, an improvement of 29.7%.

Object and image are correlated. To demonstrate that incorporating objects assists in localiza-
tion, we investigate the correlation between image and object nodes. We averaged the obtained
attention values across the objects in an image since it contains many objects. The vertical axis in
Figure 2 reflects the average attention score of the object nodes connected with the corresponding
ranking’s image node. Since the attention score tends to diminish as the number of image nodes
rises, the image node ranking was employed as the horizontal axis by sorting in descending order
using the attention value. As a consequence, the image node selected as the current node demon-
strated a substantial association with a higher object node score (Figure 2). The likelihood of being
in the adjacent image node increases as the object node score increases, suggesting that the inclusion
of object nodes benefited with agent localization. As a consequence, the image node selected as the
current node demonstrated a substantial association with a higher object node score. In summary, it
is claimed that the utilization of object nodes enables the agent to search the path more efficiently
while avoiding getting lost by properly localizing the agent.

Visualization of the attention score. We showed the attention scores of image and object nodes
to demonstrate the significance of object features. To use a ground truth detector, we finetuned
TSGM using PPO for 2M frames in the Gibson tiny dataset for this experiment. For the comparison
experiments, a model without objects was also finetuned in the same setting, using PPO for 2M
frames. The categories in the Gibson tiny dataset are the same as those in the COCO dataset; we
displayed 24 of them. Besides the illustration, we show the legend that indicates the color of each
object category. The image node is blue, whereas the object node is colored differently for each
category. The attention values are multiplied by 100 and scaled to a score ranging from 0 to 100 for
the best view. In Figure 3, the attention scores are depicted in Figure 3(a) at step 51 and Figure 3(b)
at step 59. When the bench node is not visible, the nearest image node has a score of 29.5. After the
bench node is recognized, the current node’s attention score climbs to 41.5. The score of the currently
located bench and potted plant is high, indicating that the current image node’s localization accuracy
has improved. A model in Figure 4(a) is trained using an object, whereas a model in Figure 4(b) was
trained without an object. The initial paths taken by Figure 4(a) and Figure 4(b) are similar, but
Figure 4(b) failed since it pressed the stop button at the incorrect place. The model in Figure 4(b)
was unsuccessful since it could not localize at the goal. On the other hand, Figure 4(a) successfully
hit the stop button precisely at the target location after realizing that the place at time step 28 was
not the target position by using the object configuration information. Figure 5 shows the result of the
model trained without an object (Figure 5(b)) and the version trained with an object (Figure 5(a)).
The goal is successfully reached by Figure 5(a) in 75 steps, but Figure 5(b) demonstrates that it
does not exit the bathroom. This issue appears since the agent failed to acquire the semantic relevant
knowledge to go from the bathroom or room to the living room.

6 Path and Graph Visualizations

The experimental results on real world are visualized in Figure 6,7,8,9. All episode goals are sampled
from 6m to 8m. Since the locations of nodes are not accurate in real world, we collected the node
locations for the best view.

Robot paths on the simulator are illustrated in Figure 10,11,12,13,14,15,16,17,18,19,20. In the Fig-
ures, the color gradation represents the flow of time. The blue arrow symbolizes the starting point,
and the red flag indicates the destination. An image node is represented by a blue circle, and an ob-
ject node is represented by a pink triangle. The paths are from test episodes proposed in VGM [4],
also used in Table 1. The paths are drawn in two columns in pairs. The path generated by the pro-
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posed algorithm is in the left column, and the path obtained by the comparison algorithm is in the
right column. The routes provided are more effective and efficient than the comparison algorithm [4]
and reach towards the target.

Figure 6: Real robot experimental results from the laboratory environment.

Figure 7: Real robot experimental results from the laboratory environment.
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Figure 8: Real robot experimental results from the laboratory environment.

Figure 9: Real robot experimental results from the home environment.
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Figure 10: Examples from Gibson’s Cantwell environment.
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Figure 11: Examples from Gibson’s Cantwell environment.
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Figure 12: Examples from Gibson’s Eastville environment.
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Figure 13: Examples from Gibson’s Denmark (bottom), Greigville (top left), Ribera (top right) en-
vironment.
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Figure 14: Examples from Gibson’s Mosquito environment.
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Figure 15: Examples from Gibson’s Mosquito environment.
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Figure 16: Examples from Gibson’s Mosquito environment.
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Figure 17: Examples from Gibson’s Pablo (top) and Mosquito (bottom) environment.
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Figure 18: Examples from Gibson’s Scioto environment.
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Figure 19: Examples from Gibson’s Scioto environment.
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Figure 20: Examples from Gibson’s Scioto environment.
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