
Contrastive Decision Transformers – Supplementary
Information

Sachin Konan∗

Computer Science
Two Sigma Investments, LP
sachin@twosigma.com

Esmaeil Seraj
Interactive Computing

Georgia Institute of Technology
eseraj3@gatech.edu

Matthew Gombolay
Interactive Computing

Georgia Institute of Technology
matthew.gombolay@cc.gatech.edu

1 Algorithm Details and Pseudocode

In Algorithm 1, we define ConDT’s forward pass methods. In DTPRODUCT, we predict the next
action from a history of K return, state, and action tokens, using a learnable return-dependent trans-
formation of the state and action embeddings. This transformation is a diagonal matrix whose
diagonal entries are populated by zg . In DTSA, state and action embeddings are compressed into
state-action embeddings with a linear layer, which is used in the training loops in Algorithm 2.

Algorithm 1 ConDT Forward Pass (for continuous actions)

▷ g, s, a, t: returns-to-go, states, actions, or timesteps
▷ embedg: non-linear return embedding layer
▷ embeds, embeda, embedsa, embedt, preda: linear embedding layers
▷ transformer: GPT-2 Causal Transformer

1:
2: procedure EMBEDDINGS(g, s, a) ▷ returns state and action embeddings
3: zg ← embedg(g)
4: zs ← zg ∗ embeds(a)
5: za ← zg ∗ embeda(a)
6: return zs, za
7: end procedure
8:
9: procedure DTPRODUCT(g, s, a, t) ▷ returns next predicted action

10: zt ← embedt(t)
11: zs, za ← EMBEDDINGS(g, s, a)
12: zs ← zs + zt
13: za ← za + zt
14: zâ ← transformer([zs, za])
15: â← preda(zâ)
16: return â
17: end procedure
18:
19: procedure DTSA(g, s, a) ▷ returns state-action embeddings
20: zs, za ← EMBEDDINGS(g, s, a)
21: zsa = embedsa([zs, za])
22: return zsa
23: end procedure

∗Research was conducted while as an undergraduate at Georgia Tech.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

In Algorithm 2, we programmatically define the loop definitions of pre-training and parallel train-
ing, as well as the function definition of LSimRCRL. Pre-training trains the input embedding layers
with LSimRCRL, followed by training all components of ConDT with LDT. Parallel training trains
ConDT with LConDT, which is a combination of LDT and β ∗ LSimRCRL. We note that we pub-
licly provide our codebase (including ConDT implementation, Algorithms 1-2, and the baselines) at
https://github.com/CORE-Robotics-Lab/ConDT.

Algorithm 2 ConDT Parallel/Pre-Training Pseudocode

1: procedure SIMRCRL(zsa, τ)

2: LSimRCRL =
∑BC

i=0− log

(
exp((zsa[i][0]·zsa[i][1])/τ)∑BC

j=0 1(i,j)[exp((zsa[i][0]·zsa[j][0])/τ)+exp((zsa[i][0]·zsa[j][1])/τ)]

)
3: return LSimRCRL
4: end procedure
5:

▷ pre-training:
6: for i = 1 to pretrain epochs do
7: gc, sc, ac ← load contrastive data ▷ |gc|, |sc|, |ac|: (BC , 2, *)
8: zsa ← DTSA(g, s, a)
9: LSimRCRL ← SIMRCRL(zsa, τ)

10: Back-Propagate: LSimRCRL
11: end for
12: for i = 1 to train epochs do
13: g, s, a, t← load DT data ▷ |g|, |s|, |a|, |t|: (B,K, ∗)
14: â← DTPRODUCT(g, s, a, t)
15: LDT ← ∥â− a∥2
16: Back-Propagate: LDT
17: end for
18:

▷ parallel training:
19: for i = 1 to train epochs do
20: gc, sc, ac ← load contrastive data ▷ |gc|, |sc|, |ac|: (BC , 2, *)
21: zsa ← DTSA(g, s, a)
22: LSimRCRL ← SIMRCRL(zsa, τ)
23: g, s, a, t← load DT data ▷ |g|, |s|, |a|, |t|: (B,K, ∗)
24: â← DTPRODUCT(g, s, a, t)
25: LDT ← ∥â− a∥2
26: Back-Propagate: LDT + β ∗ LSimRCRL
27: end for

2 Environment and Dataset Details

Open-AI Gym – The Open-AI Gym environments, namely the hopper, the half-cheetah, and the
walker2d, include three continuous-domain balance tasks shown in Table 1, top row. We present the
state/action space specifics for each of these domains in Table 1, bottom row. In our experiments,
each domain runs for a maximum of 1000 timesteps.

For each of these domains, we test on three variations of the dataset: the Medium (M.), the Medium-
Replay (M.R.), and the Medium-Expert (M.E.) datasets. Details for each scenario are presented in
the following:

1. Medium (M): Includes one million samples from a policy trained to achieve 1/3 of the
performance of the expert.

2. Medium-Replay (M.R.): Utilizes the full replay buffer from the policy used to generate the
Medium dataset. Timeouts are only marked when 1000 timesteps have been achieved.

3. Medium-Expert (M.E.): A 50/50 combination of the Medium dataset with samples from
expert gameplay, resulting in around a total of two million samples.

2

https://github.com/CORE-Robotics-Lab/ConDT

hopper half-cheetah walker2d

|S⃗| 11 17 17

|A| 3 6 6

Table 1: Open-AI Gym environments utilized in our experiments.

Atari 2600 – These experiments include testing on four Atari environments. Each agent receives an
RGB observation of size (210 × 160 × 3), and takes a discrete actions that maximize return. Each
Atari environment uses a frame-skipping parameter of four (i.e., repeating a selected action for four
consecutive frames), and a stickiness parameter of 0% (i.e., the agent action is always taken). We
present the action-space and maximum episode length specifics for these domains in Table 2.

Breakout Qbert Pong Seaquest

|A| 4 6 6 18

Max
Steps

2654 3901 4731 2719

Goal destroy all the bricks on
the screen

change all the tile colors
to a target color

hit pong ball as long as
possible

avoid, collect, destroy
objects at various depths

Table 2: Atari 2600 environments utilized in our experiments.

Adroit Hand-Gripping Domain – The Adroit Hand-Gripping Domain consists of a suite of envi-
ronments wherein a simulated 24 degree-of-freedom (DoF) hand must perform hand-gripping tasks.
The hands’ first, middle, and ring fingers have 4 DoF, pinky finger and thumb have 5 DoF, and wrist
has 2 DoF. Each joint is controlled with an actuator and has an angle sensor to control position.
There are three environments we sought to focus on:

1. Pen: A pen is randomly placed in an up-right configuration of the Adroit Hand, and the
hand must shuffle the pen to match some target orientation.

2. Hammer: A hammer is placed on a table next to a board with a partially-stubbed nail. The
Adroit Hand must pick up the hammer and repeatedly hammer the nail until it is pushed
fully in.

3. Relocate: A ball is randomly placed on a table and the Adroit Hand must pick up the ball
and place it in a random target area within the dimensions of the table and above its surface.

3

All these tasks have a reward function proportional to the percentage of the task completed; for in-
stance, if the hand hammers the nail 50% in, half the maximum reward is given. Additionally, for
each of these domains we decided to use a 75/25 split of trajectory data from a behavioral-cloning
policy and expert policy. The behavioral-cloning policy data consists of 3750 trajectories generated
by a policy trained on human demonstrations of the Adroit hand. The human demonstration were
recorded using a human wearing a CyberGlove III, which allowed a human to control a physical
Adroit Hand in each of the three scenarios. The expert policy data consists of 1250 trajectories
generated by a policy trained on the Adroit simulator that achieved close-to-optimal reward per-
formance. The mixture of these two policies allows the Decision Transformer to learn from both
sub-optimal and optimal return performance, which reflects the potential composition of trajectory
data with physical robotics. We present the state-space, action-space, and maximum episode length
specifics for these domains in Table 3. We provide a video demo of the simulated Adroit Robotic
HandGrip executing the learned policies by DT and ConDT for each task as supplementary material.

Pen Hammer Relocate

|S⃗| 45 46 39

|A| 24 26 30

Max
Steps

100 200 200

Table 3: Adroit Hand-Gripping Environments used in our experiments.

3 Hyper-Parameters

In Tables 3, 5, and 6, we present the training details for the Adroit, Atari, and Open-AI Gym exper-
iments. For DT+Prod and ConDT, we utilize a learnable-dependent transformation, but since return,
gt, can be quite large at the beginning of the experiment, the transformation can be ineffective. For
this reason, in some of the Gym, Atari, and Adroit Experiments, we scale gt by the maximum target
returns in each environment. Additionally, to train ConDT and ConDT w/o Prod, we either pre-
train it’s embedding layers with LSimRCRL, followed by training the entire architecture with LDT, or
parallel-train the entire architecture with LConDT. For pre-training, we use a specific learning rate
(Pre-Train lr) and train the entire architecture with (Main lr). Training the contrastive objective,
LSimRCRL, is dependent on temperature (τ), batch size BC , and the size of the state-action embed-
dings (|sa|). We found that a slightly larger state-action embedding size was required for Pong,
because gradient magnitudes were too small when |sa| = 64, like the other Atari experiments. For
model hyper-parameters, we detail the number of transformer layers (N. Layers), the number of
attention heads (N. Heads), the context length for the input sequence (K), and the transformers’
dropout rate (Dropout), in Table 4. We note that all model hyper-parameters remain unchanged,
except for the context length used specifically in the Adroit experiments. Finally, for the Gym and
Adroit experiments, we trained over 10 epochs with 10k and 5k iterations per epoch, respectively.
For Atari, we trained over 10 epochs and the iterations is roughly the size of the training set in each
environment divided by the batch size.

4

GPT Config Gym Atari Adroit

N. Layers 3 6 3

N. Heads 1 8 1

K 20 30 5

Dropout 0.1 0.1 0.1

Table 4: GPT Hyper-parameters (Unchanged from original DT paper)

Env Pre-Train Scaled gt |sa| Pre-Train lr Main lr B BC β τ

Breakout ✓ X 64 6e-4 6e-4 128 32 X 0.1

Qbert X ✓ 64 X 6e-4 128 32 0.1 0.1

Pong ✓ X 256 6e-4 6e-4 512 64 X 0.1

Seaquest X ✓ 64 X 6e-4 128 32 0.1 0.1

Table 5: Hyper-parameters for Atari Experiments

Dataset Env Pre-Train Scaled gt |sa| Pre-Train lr Main lr B BC β τ

M hopper ✓ ✓ 50 6e-3 1e-4 64 64 X 0.1

M halfcheetah X ✓ 50 X 1e-4 64 64 0.01 0.1

M walker2d ✓ ✓ 50 6e-3 1e-4 64 64 X 0.1

M.R. hopper ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

M.R. halfcheetah ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

M.R. walker2d ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

M.E. hopper ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

M.E. halfcheetah ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

M.E. walker2d ✓ ✓ 128 6e-3 1e-4 64 64 X 0.1

Table 6: Hyper-parameters for Open-AI Gym Experiments

4 Execution Gain

In this section we investigate the change in training time with our optimizations on DT. In terms of
change in model size, DT+Prod is actually smaller than DT because the input sequence becomes
2/3 of the original size because the return is pre-encoded to the transformer. ConDT w/o Prod
is the same size as DT, but it has an extra linear projection layer to convert the state and action

5

embeddings to state-action embeddings. ConDT bears the model size changes of ConDT w/o Prod
and DT + Prod, which together is a relatively negligible change in model size to DT. In terms of
training time, ConDT does require an increase in training/evaluation time over DT because of the
addition of an additional loss function. We detail the increase in training times of our methods as
well as the average % gain of ConDT with and w/o pretraining in Table 7. Each entry in the table
represents the combined execution time of training and evaluation, where evaluation is conducted
after each epoch of training. Note that in some of the environments, finishing an evaluation faster
is optimal, whereas in others, finishing an evaluation in a longer time is optimal. For example, in
the Gym experiments, which generally have the largest execution time percentage gain, the agent is
rewarded for staying upright for as long as possible, so naturally ConDT, which performs the best
in all the Gym scenarios, has the longest execution time because agents stay upright longer than
DT. Therefore, having a larger combined evaluation and training time does not necessarily imply
suboptimal training in all of the experiments. Nevertheless, ConDT and ConDT with pretraining
require 23% and 38% longer execution times across the different experiments. We believe this gain
can be drastically reduced by parallelizing evaluation between epochs, and using a faster dataloader
for the SimRCRL loss (which is the primary bottleneck with using our contrastive loss).

Experiment DT DT+Prod ConDT w/o Prod ConDT ConDT Pretrain ConDT % Gain ConDT Pretrain % Gain

hopper-medium 145 100 130.15 164 231 13.10 59.31

halfcheetah-medium 244.18 167.8 201.53 242.6 304.55 -0.65 24.72

walker2d-medium 163.92 157.13 181.13 216.43 271 32.04 65.33

hopper-replay 154.82 214.47 220.53 237.9 277.95 53.67 79.54

halfcheetah-replay 268.33 288.5 348.28 345.69 374.3 28.83 39.49

walker2d-replay 187.03 212.1 243.48 240 269.92 28.32 44.32

hopper-expert 181.35 191.27 211.15 206.07 274.22 13.63 51.21

halfcheetah-expert 255.2 257.9 304.68 306.5 319.9 20.10 25.35

walker2d-expert 221.22 219.73 255.98 280.05 306.78 26.60 38.68

Pong 372.6 311.9 461.83 X 326 X -12.51

Breakout 587.68 565.95 589.99 602.21 615.55 2.47 4.74

Qbert 348.7 306.95 482.78 X 326.7 X -6.31

Seaquest 253.33 168.98 318.22 489.02 359.92 93.04 42.07

Pen 41.62 41.33 51.4 50.82 76.06 22.11 82.76

Hammer 92.61 66.02 75.42 73.13 97.68 -21.03 5.48

Relocate 62.45 64.1 70.52 68.62 67.8 9.88 8.57

Average 260.26 243.28 303.83 251.65 274.76 23.01 38

Table 7: Combined Training and Evaluation Time (in minutes) across Baselines and Experiments

6

	Algorithm Details and Pseudocode
	Environment and Dataset Details
	Hyper-Parameters
	Execution Gain

