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Appendix

This appendix is organized as follows. In section 1, we provide the equations of the pose update
predicted by the refiner network, and show it depends on the anchor point. In section 2, we give
details on the loss used to train the refiner network. Section 3 explains the normalization strategy we
apply to the observed and rendered depth images of the RGB-D refiner. Section 4 details the pose
hypotheses used during training and inference of the coarse model. In section 5, we provide examples
of training images and give details on the data augmentation and training hardware. In section 6, we
perform additional ablations to validate (i) the contributions of our coarse network, (ii) the choice
of hyper-parameter M . We also provide details on the robot experiments shown in the supplementary
video. In section 7, we illustrate qualitatively that our approach is robust to illumination condition
variations. Section 8 illustrates the main failure modes of our approach. Finally, section 9 investigates
the robustness of our approach with respect to an incorrect 3D model.

The supplementary video shows predictions of our approach on real images. We apply our approach
in tracking mode on several videos. Tracking consists in running the coarse estimator on the first
frame of a video sequence, and then applying one iteration of the refiner on each new image, using
the prediction in the previous image as the pose initialization at the input of refinement network. This
approach can process 20 images per second. The video notably demonstrates the method is robust
to occlusion and can be used to perform visually guided robotic manipulation of novel objects.

1 Pose update and anchor point

Pose update. We use the same pose update as DeepIM [1] and CosyPose [2]. The network predicts
9 values corresponding to one 3-vector [vx,vy,vz] to predict an update of the translation of a 3D anchor
point, and two 3-vectors e1,e2 that define a rotation update explained below. The pose update consists
in updating (i) the position of a 3D reference pointO attached on the object, and (ii) the rotation matrix
RCO of the object frame expressed in the camera frame (please note the different notations for the
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anchor pointO and the object frame O):
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O] is the 3D position of the anchor point expressed in camera frame at iteration k,

Rk
CO a rotation matrix describing the objects orientation expressed in camera frame, fC

x and fC
y are

the (known) focal lengths that correspond to the (virtual) camera associated with the cropped observed
image, and R(e1,e2) is a rotation matrix describing the rotation update recovered from e1,e2 using [3]
by orthogonalizing the basis defined by the two predicted rotation vectors e1,e2 similar to [2]. Finally,
[xk+1

O ,yk+1
O ,zk+1

O ] and Rk+1
CO are, respectively, the translation and rotation after applying the pose

update. The 3D translation of the anchor point and the rotation matrix RCO are used to define the
pose the object.

Dependency to the anchor point. We now show that the predictions the network must make to
correct a pose error between an initial pose T k

CO and a target pose T k+1
CO is independent of the choice

of the orientation of the objects coordinate frame O but depends on the choice anchor pointO. Let
us denote O1,O2 two different anchor points, and RCO1 ,RCO2 the rotation matrices of the object
(expressed in the fixed camera frame) for two different choices of object coordinate frames O1 and
O2. We note tO1O2 =O2−O1 = [x12,y12,z12] the 3D translation vector between O2 and O1; and
RO1O2 =RT

CO1RCO2 the rotation of coordinate frame O2 expressed in O1. For one choice of anchor
point and object frame, e.g. O1 and RCO1 , we derive the predictions the network has to make to correct
the error using equations (1),(2),(3),(4):
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and similar for 2 by replacing the superscript. From these equations, we derive:
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From eq. (12), we have R1
(
R2
)T

= Id. In other words, the rotation matrices that the network must
predict to correct the errors in scenarios 1 and 2 are the same. The network predictions for the rotation
components thus do not depend on the choice of the choice of object coordinate system. However the
other components of the translation cannot be simplified further. For example, derivations of eq. (11)

leads to v1z−v2z =
z12(zk+1

O1 −zk
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zk
1 (z
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which is non-zero in the general case where O1 and O2 are different
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and there is an error between the initial and target poses. This proves that different choices of anchor
point leads to different predictions. For the network to generalize to a novel object, the network be
able to infer the 3D position of the anchor point on this object. We achieve this by rendering multiple
views of the objects in which the anchor point reprojects to the center of each image as explained in
Section 3.1 of the main paper.

2 Refiner loss

Our refiner network is trained using the same loss as in CosyPose [2], but without using symmetry infor-
mation on the objects because it is not typically not available for large-scale datasets of CAD models like
ShapeNet or GoogleScannedObjects. We first define the distance DO(T1,T2) to measure the distance
between two 6D poses represented by transformations T1 and T2 using the 3D pointsXO of an object O:

DO(T1,T2)=
1

|XO|
∑

x∈XO

|T1x−T2x|, (13)

where |·| is the L1 norm. In practice, we uniformly sample 2000 points on the surface of an object’s
CAD model to compute this distance. We also define the pose update function F which takes as
input the initial estimate of the pose T k

CO, the predictions of the neural network [vx,vy,vz] and R, and
outputs the updated pose:

T k+1
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where the closed form of function F is expressed in equations (1) (2) (3) (4). We also write [v⋆x,v
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T ⋆
CO is the ground truth camera-object pose. The loss used to train the refiner is the following:
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where DO is the distance defined in eq. (13) and K is the number of training iterations. The different
terms of this loss separate the influence of: xy translation (15), relative depth (16) and rotation (17).
We sum the loss over K=3 refinement iterations to imitate how the refinement algorithm is applied at
test time but the error gradients are not backpropagated through rendering and iterations. For simplicity,
we write the loss for a single training sample (i.e. a single object in an image), but we sum it over all
the samples in the training set.

3 Depth normalization

When depth measurements are available, the observed depth image and depth images of the renderings
are concatenated with the images, as mentioned in Section 3.1 of the main paper. At test time, the
objects may be observed at different depth outside of the training distribution. In order for the network
to become invariant to the absolute depth values of the inputs, we normalize both observed and
rendered depth. Let us denote D a depth image (rendered or observed are treated similarly). We apply
the following operations to D. (i) Clipping of the metric depth values of D to lie between 0 and zkO+1,
where zkO is the depth of the anchor point on the object in the input pose at iteration k:

D←clip(Dk,0,zkO+1), (18)

and (ii) centering of the depth values:

D← D

zkO
−1. (19)
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4 Pose hypotheses in the coarse model

Training hypotheses. Given the ground truth object pose T ⋆
CO, we generate a perturbed pose T ′

CO

by applying random translation and rotation to T ′
CO. The parameters of this (small) perturbation are

sampled from the same distribution as the distribution used to sample the perturbed poses the refiner
network is trained to correct. The translation is sampled from a normal distribution with a standard
deviations of (0.02,0.02,0.05) centimeters and rotation is sampled as random Euler angles with a
standard deviation of 15 degrees in each axis.

We then define several poses that depend on T ′
CO and cover a large variety of viewing angles of the

object. We define a cube of size 2z′O, where z′O is the z component of the 3D translation in the pose
T ′
CO. The CAD model of the object observed under orientation R′

CO is placed at the center of the
cube. We then place 26 cameras at the locations of each corner, half-side and face centers of the cube.
By construction, one of these cameras, which we denote C0, has the same camera-object orientation as
T ′
CO, and all others {Ci}i=1..25 correspond to cameras observing the object under viewpoints which

are sufficiently far from RC0O and outside the basin of attraction of the refiner by construction. In
addition, we apply inplane rotations of 90◦, 180◦ and 270◦ to each camera, which leads to a total of
26∗4=104 cameras with one positive and 103 negatives.

We mark TC0O as a positive for the coarse model because the error between TC0O and T ⋆
CO lies within

the basin of attraction of the refiner. All other cameras are marked as negatives. During training, the
positives account for around 30% of the total numbers of images in a mini-batch.

Test hypotheses. At test time, a 2D detection of the object is available. Let udet=(udet,x,udet,y) and
(∆udet=∆udet,x,∆udet,y) define the center and the size of the approximate 2D bounding box of the
object in the image. We start by defining a random camera-object orientation Rp. The anchor point
on the object is set to match the center of the bounding box udet. We make a first hypothesis of the
depth of the anchor by setting zguessOp =1m and use this initial value to estimate the coordinates xOp

and yOp of the anchor point in the camera frame:

xguess
Op =udet,x

zguessOp

fx
(20)

yguessOp =udet,y
zguessOp

fy
, (21)

where fx and fy are the (known) focal lengths of the camera. We then update the depth estimate
zguessOp using the following simple strategy. We project the points of the object 3D model using
Rp and the initial guess of the 3D position of the anchor point we have just defined. These points
define a bounding box with dimensions ∆uguess,x=(∆uguess,x,∆uguess,y) and the center remains
unchanged uguess = udet by construction. We compute an updated depth of the anchor point such
that its width and height approximately match the size of the 2D detection:

zOp =zguessOp

1

2

(
fx

∆uguess,x

∆udet,x
+fy

∆uguess,y

∆udet,y

)
(22)

and use this new depth to compute xOp and yOp using equations (20) and (21) that were used to define
xguess
Op and yguessOp . The rotation Rp and 3-vector [xOp ,yOp ,zOp ] define the pose of hypothesis p.

We then use the same strategy used to define the training hypotheses (described above) in order to
define 103 additional viewpoints depending on p. We repeat the operation P = 5 times, for a total
of 5∗104=520 pose hypotheses.

5 Training details

Training images. We generate 2 million photorealistic images using BlenderProc [4] as explained in
Section 3.2 of the main paper. Randomly sampled images from the training set are shown in Figure 1.

Data augmentation. We apply data augmentation to the synthetic images during training. We use
the same data augmentation as CosyPose [2] for the RGB images. It includes Gaussian blur, contrast,
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Figure 1: Example of training images. Randomly sampled images from our large-scale synthetic dataset gener-
ated with BlenderProc [4]. CAD models from the ShapeNet [5] and GoogleScannedObjects [6] datasets are used.

Pose hypotheses YCB-V LM-O

PPF 52.7 34.4
PPF+Zephyr [11] 59.8 45.8
PPF+Our coarse 61.6 52.1

Table 1: Performance of the coarse model. We compare the performance of our coarse network with Zephyr [11].

brightness, colors and shaprness filters from the Pillow library [7]. For the depth images, we take
inspiration from the augmentations used in [8, 9, 10]. Augmentations include blur, ellipse dropout,
correlated and uncorrelated noise.

GPU hardware and training time. Training time is respectively 32 and 48 hours for the coarse
and refiner models using 32 V-100 GPUs. This training is performed once, and estimating the pose
of novel objects does not require any fine-tuning on the target objects.

6 Additional experiments.

Coarse network. In order to evaluate the validate the contributions of our coarse scoring network,
we use a set of pose hypotheses generated for novel objects by the commercial Halcon 20.05 Progress
software which implements the PPF algorithm described in [22]. Note that these are the same pose
hypotheses used in Zephyr [11]. We then find the best hypotheses using the scores of PPF, the scoring
network of Zephyr or our coarse network, and report AR results for the LM-O and YCB-V datasets
in the table 1. On both datasets, our coarse network is better than the two baselines (PPF and Zephyr)
for selecting the best poses among a given set of hypotheses.
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Classification-based coarse network. To validate our classification-based coarse model, we consider
a regression-based alternative. We trained a regression-based network similar to the coarse model
of CosyPose [2] which takes as input six views of the objects covering viewpoints at the poles of a sphere
centered on the object. The network collapsed during training, leading to large errors that cannot be
recovered by the refiner and a performance close to zero on the BOP datasets. We hypothesize this failure
is due to the presence of symmetric objects in our training set which leads to ambiguous gradients during
training. This failure could also be attributed to other factors, such as the difficulty to interpret the full
3D geometry of an object with a CNN given six views of its 3D model captured under distant viewpoints.

Number of coarse pose hypotheses. M is an important parameter of our method, which can
be used to choose a trade-off between running time and accuracy. The performance significantly
improves from M=104 to M=520 (+11.4 AR on BOP5) while keeping the running-time of the coarse
model reasonable (1.6 seconds for M=520 compared to 0.3 seconds for M=120). Above M=520, the
performance improvement is marginal, e.g. (+0.9 AR) for 4608 hypotheses. Please note that we are
still making improvements to our code and have lower runtimes than reported in the paper (1.6s for
M=520 compared to the 4s mentioned in line 276).

Robotic grasping experiments. We performed a qualitative real-robot grasping experiment. For
multiple YCB-V objects, we manually annotated one grasp with respect to the object’s coordinate
frame. We then placed the considered object (e.g. the drill in the supplementary video) in a scene
among other objects representing visual distractors. The object may be placed on the table or on
another object. We then take a single RGB image of the scene using a RealSense D415 camera mounted
on the gripper of a Franka Emika Panda robot. We detect the object in 2D using the Mask-RCNN
detector from CosyPose [2], and run our Megapose approach composed of coarse and refiner modules
for estimating the 6D pose of the object with respect to the camera. We then express the 6D pose of
the object and grasp with respect to the robot using the known camera-to-robot extrinsic calibration.
We then use a motion planner to generate a robot motion that reaches the estimated grasp pose with
the gripper and lift the object. This experiment shown in the supplementary video shows that the pose
estimates are of sufficiently high quality to be useful for a robotic manipulation task.

7 Robustness to illumination conditions

In Figure 2, we show qualitative predictions of our approach for the watering can on the TUD-L dataset.
Please notice the high accuracy of our approach despite challenging illumination conditions.
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Figure 2: Qualitative examples on the TUD-L dataset. Each row presents one example prediction on a real image.
The first column is the real observed image, the second column is the prediction of our approach here illustrated
using a rendering of the object’s CAD model in the predicted pose, and an overlay of the prediction and output
is shown on the right.

8 Failure modes and performance on specific types of objects

We carry out a per-object analysis of the performance of our approach on the YCB-V dataset. For each of
the 21 objects of the dataset, we report the percentage of predictions for which the error with the ground
truth is within a threshold of 15◦ in rotation and 5cm in translation. Results are reported in Figure 3.

Next, we illustrate the main failure modes of our approach using a set of objects which have a
performance below average on this dataset. Examples of failure cases are presented in Figure 4. We
observed three main failure modes to our approach. First, we observe the orientation of a novel object
may be incorrectly predicted if the object has a similar visual appearance under different viewpoint.
We observed this failure mode in particular for textureless objects such as a red bowl that appears
similar whether it is standing upside or it is flipped. Second, we observe that our approach may fail to
disambiguate the pose of objects that are asymmetric but for which it is necessary to look at fine details
on the objects to disambiguate multiple possible poses. An example is a pair of scissors which have
left and right handles with slightly different dimensions. In both of these failure modes, we observed
that our refiner gets stuck into a local minimal due to an inaccurate coarse estimate outside of the basin
of attraction of our refiner model. Finally, using a CAD model with incorrect scale leads to an incorrect
estimation of the depth of the object due to the object scale/depth ambiguity in RGB images. We
observe for example that the translation estimates of the wooden block of YCB-V have systematically
large error despite the rendering of our prediction correctly matching the contours of the object in the
observed image. This is because the scale of the CAD model of the wooden block publicly available
does not match the correct dimensions of the real object which was used for annotating the ground truth.
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Figure 3: Per-object analysis on the YCB-V dataset. For each object, we report the percentage of estimates for
which the error between our pose prediction and the ground truth is within 5 centimeters in translation and 15
degrees in rotation.

Figure 4: Illustration of the main failure modes of our approach. In (1) and (2), the contours of the object in
the predicted poses correctly overlay the observed image, but the pose is incorrect because these objects have
a similar appearance under different viewpoints. In (3), our approach fails to correctly distinguish the left and
right handles with different dimensions in order to disambiguate the orientation of the asymmetric pair of scissors.
In (4), our pose prediction does not match the ground truth annotation, because the CAD model of the wooden
block we use for pose estimation has different dimensions that do not match the dimensions of the real objects
which was used for annotating the ground truth. Please notice in all examples how the contours of the object
in the predicted pose are closely aligned with the contours of the object in the input image.
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Figure 5: Predictions using low-fidelity CAD models. In (a) we show the result of our approach on LineMOD
Occlusion for three different objects which have only low-fidelity CAD models available. In (1) and (2), the
quality of the mesh and textures is poor as illustrated in (b). Notice for example how the annotations on the glue
box or the brand of the drill are not readable on the CAD models. In (3), the hole of the watering can does not
appear in the CAD model. Despite these discrepancies between the real object and the CAD model, our approach
correctly estimates the pose of each object.

9 3D model quality

Our approach can be applied even if the 3D model of the object does not exactly matches the real
object. In figure 5, we show examples of correctly estimated poses using low-fidelity CAD models
with low-quality textures or geometric discrepancies between the real object and its 3D model.
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