A Survey

In this section, we provide further information about the survey presented in Sec. 2 that guided our
benchmark development. We’ll discuss how we selected activities that are part of the survey, the
survey design and execution, and the demographic information about the survey participants.

A.1 Activity Sources

We source activities from a combination of time-use surveys and WikiHow [A1]. Time-use surveys
are studies that inquire about the daily time use of a population [50], making them a good proxy
for daily requirements of embodied intelligence. We combine information from three time-use
surveys—American [50], Harmonized European [51], and Multinational [52] Time Use Surveys—and
obtain an initial set of 540 activities. The time-use surveys focus on activities that happen with
enough frequency and require a significant amount of time. However, there are other activities that are
essential for everyday human life, but not reflected in the time-use surveys. WikiHow articles include
activities that are important for humans where they seek guidance, even if they are not as frequent as
the ones included in the time-use surveys. This indicates a great potential to source additional useful
and relevant daily activities. We complement the activities from the time use surveys with WikiHow
article titles, of which there are 180,000+. These constitute a raw set of activities that are filtered
down by feasibility, as explained in the next paragraph.

Activity filtering for feasibility: Simulation constrains which activities collected from time-use
surveys and WikiHow can actually be used in BEHAVIOR-1K. We used the following criteria based
on OMNIGIBSON and BDDL constraints to filter the activity pool prior to the survey:

Filtering principle Example activity filtered out
Activity requires physics or chemistry not supported in simulation SteamingClothes, MakingSoap
Activity involves creating or consuming media ReadingABook

Activity requires more than a day in real time DryingSeedsOvernight

Activity requires non-visual perceptual modalities SweeteningFood

Activity requires geometric configurations too fine-grained for BDDL | SettingUpANativityScene
Activity is predicated on branded items SprayingWindex

Activity involves other people or live animals AskingForARaise

After filtering and eliminating duplicates, and including the activities from [27], 2,090 activities
remain to be surveyed.

A.2 Survey Design

Our survey is structured as follows:

» Demographic questions requesting information about the number of people in the household, oc-
cupation, general location, and relationship between household work, automation, and livelihood
(see Fig. A.1 for results).

* Activity survey questions requesting the value of automation of a batch of activities to the
respondent. Specifically, this section comprises:

« 50 questions, one question per activity

o Question text: On a scale of 1 (left) to 10 (right), rate how much you want a robot to do this
activity for you.

« Each response uses an independent Likert score [A2] on a scale from 1 (less beneficial) to
10 (most beneficial)

We piloted alternatives for the survey about two design decisions: 1) question wording, and 2)
question format. With respect to the wording for the question, we piloted three alternatives to specify
the agent: robot, assistant, and automation. Our goal was to study any possible (mis)conceptions
about robots that might bias the study. By way of 30 pairwise T-tests and 10 ANOVAS [A3], we
did not find any statistically significant difference between the results obtained using these three
wordings. With respect to the format of the question, we piloted two alternative formats: 10-point
Likert, and three-element best-worst scaling. By way of Kendall’s tau [A3], there was a strong
correlation between the rankings determined by Likert scores and standard metrics of best-worst
scaling. We, therefore, conclude that either method will give us a similar ranking, and select the more
resource-efficient option (Likert).

15

1600 2
1400
1200

150 1000

Count
®
S
3
Count

20 30 40 50 60 70 80 90
Respondent age

White
Other

AAPI
Black
$524k+

Hispanic

$165k-$200k

$86k-$165k
$200k-$524k

Income level

Figure A.1: Demographic distribution of the participants in our survey. Respondents appear to have similar
demographics to the wider U.S. Mechanical Turk worker population [A5]. Not pictured: respondent gender
(43.41% women, 55.50% men, 0.83% non-binary, 0.26% other), disability status (92.56% no, 5.74% yes, 1.70%
prefer not to answer).

Survey collection: We deployed our survey on Amazon Mechanical Turk [A4] and collected 50
unique responses per activity. There were a total of 1,461 different respondents and their average
scores ranged from 1.9 to 9.3, showing high diversity. The average score was 5.16. To ensure
response quality, we repeated four questions in every survey as an attention check. If responses to a
pair of repeats differed by more than two points, we considered it failed. Two or more failures led to
rejection. We also rejected survey responses that had no significant variance across their responses to
50 different activities.

A.3 Demographic Information

Fig. A.1 depicts the results of our demographic questions on the participants of the survey. We
observe that most adult age groups have good representation, particularly pre-retirement age groups,
and are concentrated in the 30-40 group. Racially, the respondents are around 75% white, a larger
proportion than the U.S. population but similar to the Mechanical Turk proportion [A5]. Other races
appear to have proportions similar to but not the same as their presence on both Mechanical Turk and
in the general population; this may be due to their overall small numbers in all three [AS5]. There is
some Native American representation, though not statistically significant. Income-wise, respondents
tend to be in the $30,000-$150,000 range, particularly in the lower half.

The participants’ gender is distributed by 43.41% women, 55.50% men, 0.83% non-binary, 0.26%
other. Gender representation is not as even as the U.S. population but more so than the Mechanical
Turk worker population [AS5]. There is a small representation of non-binary individuals. When
it comes to disability status, our participants reported 92.56% no-disability, 5.74% disability, and
1.70% prefer not to answer. Thus, our survey contained some but limited representation of people
with disabilities. This group, together with the elderly, are groups commonly assumed to potentially
benefit from robotic efforts; they could be subject to future targeted surveys.

B Activity Annotation

Obtaining the BDDL definitions for 1,000 activities requires multiple preparatory steps to gather
the knowledge needed. This knowledge also becomes part of the BEHAVIOR-1K DATASET. The
pipeline is outlined in Fig. A.2. We now detail each annotation other than the survey. Furthermore,
quality assessment statistics for these annotations are found in Sec. B.1. We see that experienced
annotators find our resulting BEHAVIOR-1K knowledge base highly accurate.

Obtaining list of objects per activity (WikiHow articles, noun phrase extraction, and manual
object filtering): Our activity definition requires first defining a set of objects and properties that the
annotators could use to describe an activity. We would like these domains to be natural and ecological,
containing all relevant objects that humans may consider necessary for a task. To obtain such an
ecologically plausible object space per activity, we parse WikiHow articles. Since WikiHow is a
how-to database with a wide following and community as well as expert- and peer-review, the article
texts document objects that are used and acted on in an activity. We therefore asked crowdworkers
from the Upwork platform to collect articles; for robustness, we had five articles collected for each
activity. We used a chunking model [A6] to extract noun phrases from the article text, then we
manually filtered the noun phrases into tangible objects.

16

Human-
annotated Prop. param.

— £
properties annots.
‘WikiHow —l 99% accurate
Survey- zr\/t\ih}uHow Extracted Manually s i GP’{-gt,-d BDDL dffn.
selected — clespery) T —» filtered —» Oynsetsfor = annotate |) annot.
activities Sty phrases object nouns Quischienns DROPEIbES 4.85+/5.0
98% relevance 98.8% accurate approval score
*
e YoRdNC Transition
'— generated — ma
) hierarchies L
Method of generation
Crowdsourcing Learned method Researcher Database Programmatic

Figure A.2: Flow chart of the annotation pipeline: activity selection, activity article collection, object list
extraction, object property and parameter annotation, BDDL annotation.

Synsets for object terms and WordNet hierarchy generation: After obtaining an object space for
each activity, we take their union and crowdworkers match each one to a WordNet [57] synset. This
eliminates word-sense ambiguity in the knowledge base and creates a hierarchical structure in the
overall object space via the WordNet hierarchy. This process yielded 1,484 total synsets.

Property annotations: Each object that is a leaf-level synset of the WordNet hierarchy is associated
with the set of object properties in BEHAVIOR-1K, each of which is fully simulatable in OMNIGIB-
SON (full list of properties in Table A.1). The properties define which predicates can apply to the
object - e.g. an object having the cookable property means it can be cooked and not cooked. This
association is done task-agnostically because objects/states that are irrelevant or undesirable for a
specific activity will still provide important learning signals. All properties that apply to many of
the 1,484 synsets and therefore require a large-scale annotation are done by either GPT-3 [58] or
crowdworkers. GPT-3 is used for all properties (total of nine) for which the Hamming distance and
false-positive rate for a sample compared to a human-annotated ground-truth are both less than 10%.
Human annotation is used for five more properties. The remaining properties either apply to very
few objects and are therefore annotated manually, or in most cases can be inferred from the other
annotations (e.g. everything “cookable” is “overcookable”) and are determined analytically from the
other property annotations.

This annotation is done only for leaf-level synsets, then properties of higher-level synsets are inferred
from the leaf-level annotations. This prevents definition unsolveability. In more detail: as shown
in Fig. A.2, the hierarchical structure is applied to the object space. This allows activity definition
annotators to refer to them instead of leaf-level synsets; for example, a PuttingAwayGroceries def-
inition can have “five edible_ fruit.n.01s” rather than “two apple.n.01s and three banana.n.01s”,
allowing more variation in activity instantiation because far more object models are valid. However,
3-D object models are generally only attached to leaf- or near-leaf-level synsets, meaning that a
definition may have a higher-level synset with various predicates attached to it, and at simulation time
the object model (associated with one of the synset’s descendants) must have those states simulated.
A problem might occur when e.g. container.n.01 is annotated as fillable and the definition calls
for a container.n.01 to be filled with a liquid, but the actual model that gets sampled into the
simulator to satisfy container.n.01 is a cloth bag that doesn’t support being filled with a liquid. So
to avoid this unsolveability, the properties of any non-leaf synset are exactly the intersection of all its
descendants’ properties.

Object property Annotation method Prompt to annotator Example objects

assembleable manual N/A desk.n.01, table.n.02

boilable prog. (all liquid) N/A champagne.n.01, beef__broth.n.01
breakable human Mark if the object can be broken wine_bottle.n.01,

into smaller pieces by a human room_light.n.01
dropping it on the floor without a
tool.

cleaningTool GPT-3 Is a [object] designed to clean scrub_brush.n.01,

things? pipe_cleaner.n.01
cloth manual N/A hammock.n.02, canvas.n.01
coldSource GPT-3 Is [object] a source of cold? refrigerator.n.01, ice.n.01
cookable GPT-3 Can a [object] be cooked? biscuit.n.01, pizza.n.01
deformable prog. (all softBody, cloth, | N/A tortilla.n.01, clay.n.01

rope)

fireSource GPT-3 Is a [object] designed to create fire? lighter.n.01, sparkler.n.01
flammable human Mark if the object can catch fire (i.e. candle.n.01, mail.n.01

burn with a flame).

17

foldable prog. (all cloth, softBody) N/A tortilla.n.01, jean_jacket.n.01
freezable prog. (all heatable) N/A olive_oil.n.01, ginger _beer.n.01
heatable prog. (all objects) N/A 0il.n.01, fish__knife.n.01
heatSource GPT-3 Is a [object] a source of heat? oven.n.01, toaster.n.01
liquid GPT-3 Is a [object] a liquid? gasoline.n.01, liquid _soap.n.01
meltable manual N/A cheese.n.01, chocolate.n.02
openable human Mark if the object is designed to be mixer.n.04, keg.n.01
opened.
overcookable prog. (all cookable) N/A gazpacho.n.01, jam.n.01
physicalSubstance | manual N/A flour.n.01, salt.n.02
rope manual N/A ribbon.n.01, fairy _light.n.01
sliceable GPT-3 Can a [object] be sliced easily by a | sweet_corn.n.01, sandwich.n.01
human with a knife?
slicingTool GPT-3 Can a [object] slice an apple? blade.n.09, razor.n.01
soakable GPT-3 Can a [object] absorb liquid? sponge.n.01, tea_bag.n.01
softBody manual N/A dough.n.01, pillow.n.01
substance prog. (all liquid, N/A water.n.06, milk.n.01
vis.Subst., phys.Subst.)
toggleable human The object can be switched between hot_tub.n.01, light__bulb.n.01
a finite number of discrete states
and is designed to do so.
visualSubstance manual N/A coriander.n.02,
cocoa_powder.n.01
waterSource manual N/A sink.n.01
wetable prog. (all non-substance N/A lasagna.n.01, ashtray.n.01
unfoldable prog. (all foldable) N/A tissue.n.02, foil.n.01

Table A.1: Properties annotated for BEHAVIOR-1K for each object category and included in the BEHAVIOR-
1K DATASET knowledge base

Property parameter annotations: BDDL separates objects and object states (i.e. terms and predi-
cates), but simulating realistic “cooking” or “filling” requires information for object-object property
tuples, not just objects or object properties alone. For example, in the real world, an apple.n.01
and a chicken.n.01 do not become cooked at the same temperature, so simply knowing they are
both cookable is insufficient. BEHAVIOR-1K DATASET therefore includes manual annotation of
several property parameters that are (object, object property) specific, such as cookTemperature
for all cookable objects.

Examples of object-property pairs and parameters:
e Temperature required for cookable object to go from (cooked object) = False to (cooked
object) = True
o crab.n.05: must reach 63°C
« squash.n.02: must reach 58°C
« meatball.n.01: must reach 63°C
o chicken_leg.n.01: must reach 74°C
» Temperature generated by heatSource object. For toggleable heatSources, this may require
toggledOn(object) = True
« toaster_oven.n.01: generates 204°C
« ember.n.01: generates 1093°C
e hand_ blower.n.01: generates 45°C
o coffee__maker.n.01: generates 93°C

Transition rules: There are many activities that involve complex chemical and physical processes
that are beyond the capability of the state-of-the-art simulation technology. For example, blending
different fruits into a smoothie or sanding a rusted surface are extremely difficult to simulate, but the
agent actions to complete these tasks are still within reach, e.g. placing the fruits inside a blender.
Therefore, in ordet to support these type of activities, we create a set of transition rules that will be
used by OMNIGIBSON to bypass the underlying physics but still produce visually realistic physical
transitions, e.g. smoothie particles being generated inside the blender after the blender is turned on.

Examples of transition rules:
» Composition and decomposition of objects

« Transition rule used in make a strawberry slushie
o Inputs: 4+ strawberry.n.01s, ice.n.01, lemon__juice.n.01, agave.n.01

18

« Transition machine: blender.n.01
o Outputs: smoothie.n.01
« Transition rule used in make gazpacho
« Inputs: basil.n.03, salt.n.02, black_pepper.n.02, tomato__juice.n.01, cucum-
ber.n.02, water.n.06, lemon__juice.n.01
« Transition machine: saucepan.n.01
« Outputs: gazpacho.n.01

* Realistic cleaning rules

« Transition rule used in CleanTheExteriorOfYourGarage
« Substance covering object: paint.n.01 or spray__paint.n.01
« Objects needed to remove: cleaningTool and (solvent.n.01 or acetone.n.01)
« Transition rule used in CleanYourRustyGardenTools
« Substance covering object: rust.n.01 or patina.n.01 or incision.n.01 (simulated
as particles but exposed to annotators as unary scratched predicate) or tarnish.n.01
(simulated as particles but exposed to annotators as unary tarnished predicate)
« Objects needed to remove: emery_paper.n.01 or whetstone.n.01

Activity definitions in BDDL: Finally, the object spaces and the relevant properties and predicates
they enable are offered to lay annotators to generate BDDL definitions. Annotators build activity
definitions using an annotation interface that includes a visual version of BDDL [27] (details on new
features in BDDL are in Sec. C). The annotation interface enforces the requirements needed to make
definitions logically solvable and well-formed. We collect one definition per activity for a total of
1,000 BDDL activity definitions.

Listings 1, 2, and 3 show examples of BEHAVIOR-1K activity definitions, while Listing 4 and 5
show examples of BEHAVIOR-100 definitions. We see that while the numbers of objects and
literals are similar, speaking to the fact that both benchmarks have reached similar scale and detail
for the activities they have, BEHAVIOR-1K has far larger and more detailed activity distribution.
The MakeScones activity involves transition rules that turn ingredients in :init to scones in :goal,
a process that will require the listed mixer and oven in OMNIGIBSON. By contrast, cooking in
BEHAVIOR-100 was limited to single objects transitioning from not cooked to cooked; other
benchmarks are similar or lack cooking entirely. CleanYourLaundryRoom involves specific
cleansing agents to clean mold, whereas BEHAVIOR-100 cleaning tasks only had two types of
“dirtiness” (stained and dusty) and the only rule was to use water in the case of stained. Fix-
ingMailbox also shows rust-specific cleaning (requiring emery paper) and transitioning from the
broken to not broken states via transition rule-based simulation.

B.1 Quality assessment of BEHAVIOR-1K annotations

Article Collection | Object Extraction | Human Properties | GPT-3 / Machine Properties
Accuracy (Approval Rate) 0.974 0.968 0.990 0.988
Fl-score 0.984 0.990 0912 0.930
False Discovery Rate 0.026 0.032 0.031 0.029
False Positive Rate N/A N/A 0.002 0.003

Table A.2: Quality check results for object and object property annotatlons for each stage in the annotation
pipeline, report human verification results. The F1-score is m The False Discovery Rate is
FDR = FP/(TP+FP) and the False Positive Rate FPR = FP/(TN+FP). The high accuracy and F1-scores and low
FDRs and FPRs show that our annotation results are of high quality.

Activity Definition
Question 1 | Question 2 | Question 3 | Question 4
Average Rating 4.875 4.942 4.967 4.975
Standard Deviation 0.331 0.234 0.364 0.156

Table A.3: Quality check results for activity definitions. Q1: Are the objects listed relevant to the definition
of the task?, Q2: Do the initial placements/locations of objects make sense?, Q3: Are the actions to perform
(“goals”) relevant to the definition of the activity?, Q4: Is this definition reasonable?

Each activity definition was evaluated on a scale of 1-5 for each of the questions, and the average score and
standard deviation are presented. The increased granularity still reflects the high quality of our results.

Our quality control investigation shows us that all labeling done by crowdworkers and GPT-3 is
of the highest quality. Five crowdworkers with an extensive background in data labeling for large

19

machine learning projects, coding, or data verification affirmed the results from earlier crowdworkers.
The accuracies for all the labeling tasks were all above 96%, the F1 scores were above 91% and
the false positive and false discovery rates were between 2-3% as shown in Table A.2. We noticed
that the Synset Verification is a bit lower in accuracy than the other labeling tasks. This may be due
to subtleties in acceptable synset definitions: for example, a “reasonably narrow hypernym” of a
word not found in WordNet [57] is acceptable, such as a "dispenser" for a "soap dispenser"”, but there
may be gray areas regarding what is considered "reasonably narrow" (e.g. would a "hand tool" be
reasonable as a replacement for a "soap dispenser”?)

The activity definition process was evaluated with more granularity using a Likert scale and an array
of questions. We found that the response values had consistently high averages (very close to the
maximum score of 5) and low standard deviations as shown in Table A.2. We also found no significant
discrepancy for activity definition scores across topics (e.g. tasks related to "cleaning"), showing that
the BDDL definitions were rated uniformly across the span of activity categories.

C New BDDL features

BEHAVIOR-1K uses an expanded version of the BDDL used in BEHAVIOR-100 [27], in order
to support the new set of diverse activities. There are four new features here: 1) representation of
substances, 2) three-valued predicates, 3) composition and decomposition of objects, and 4) variable-
arity predicates. We now detail the need for each of these, why the BDDL from BEHAVIOR-100
cannot support them, and the design in this version of BDDL.

Representation of substances: BEHAVIOR-1K introduces substances, objects that are arbitrarily
subdivideable and do not obey clear instance boundaries such as water.n.06 or flour.n.01. The lack
of instance boundaries is difficult with traditional PDDL/BDDL.: for example, if there are two bottles
of orange juice where the juice inside one is called orange__juice.n.01_1 and the juice inside the
other is called orange__juice.n.01_2, any mixing of the particles makes it near-impossible for the
agent to satisfy a :goal condition pertaining to an instance. Even with quantification, a condition
like exists (orange_juice.n.01) (filled orange_ juice.n.01 glass.n.01_3) is still unfair: if the
agent mixes particles from the two different orange__juice instances such that together they filled
glass.n.01_3 but neither instance alone has enough particles in glass.n.01_3 to fill it, the :goal
will not be met.

We simply enforce that there is up to one instance of any substance in a definition. The annotator
can still control quantity by spawning it in as many containers as desired. Unlike labeling every
particle separately, this maintains a compact representation. This does not allow for some of the
substances to be different from some (e.g. some of the orange juice is cold and some is hot), but we
consider this an acceptable limitation.

Furthermore, particle-based objects can be computationally expensive to simulate. When an annotator
uses orange_ juice.n.01 only as a container of orange juice and not actually the particles (e.g. in a
PuttingAwayGroceries activity), this becomes a waste of computational resources. Therefore, we
introduce a custom container synset for every substance that has the same properties and WordNet
hierarchy structure as bottle.n.01 and instruct annotators to use it if all they want is the container.

Three-valued predicates: A common issue in BEHAVIOR-100 activities is that success on predi-
cates involving naturally continuous-valued quantities is sudden and arbitrary: cracking a window a
little bit suddenly changes it from not open to open, and the activity from undone to done — even
though the window is not a typical human conception of “open”. PDDL 2.1 [A7] has numerical
fluents and derived predicates, which offer continuous states. However, this granularity may not be
crucial to the high-level activities in BEHAVIOR- 1K, and the concept is also difficult to communicate
to lay annotators.

We therefore treat certain predicates as three-valued by having two Boolean predicates where the
negations are the same, such as filled and empty (rather than just not filled). The annotators still see
one Boolean predicate, in this case filled, and negate it to say the opposite, but we assume that when
they negate, they mean something decisively empty. This is a strong assumption but generally safe
as people tend not to add expressions that seem like common sense. Wherever we see the predicate
negated in the definition, we switch it out with the other predicate. This applies to filled/empty,
open/closed, and folded/unfolded.

20

To ensure that the definition is logically the same after the switch, the underlying BDDL implementa-
tion converts the definition using De Morgan’s Law such that all negations are only applied to atomic
formulae before the switch occurs.

Composition and decomposition of objects: In standard PDDL/ BDDL, the objects in :objects
are assumed to persist throughout the activity. There is no concept of creating a new object that did
not appear in the :init or explicitly destroying an object.

To enable our transition rules that involve turning some objects into others, we require a representation
that will provide the desired information unambiguously. The :objects section cannot be inferred
simply from a :goal that has new objects in it, because :goal is not exhaustive. We therefore introduce
the future predicate, used in :init on all objects that do not appear in the scene when the agent enters,
but must be present for the :goal to be satisfied. All objects in future predicates appear in :objects
and they cannot appear in any other literals in :init. This approach takes inspiration from [A8], which
updates a reference to an object (e.g. a wall) as it keeps changing form as more sub-objects (e.g.
blocks) are added to it.

Variable-arity predicates: Certain predicates can take various numbers of objects while indicating
the same underlying concept. For example, in BEHAVIOR-1K, the mixed predicate can take any
number of objects: the expressions (mixed apple.n.01_1 apple.n.01_2 peach.n.03_1) and
(mixed apple.n.01_1 apple.n.01_2 peach.n.03_1 banana.n.01_1) give different numbers
of objects to mixed, but mean the same thing and are checked the same way in OMNIGIBSON.

Logic predicates are fixed-arity by default, but work exists to expand to variable-arity predicates [A9].
PDDL uses this assumption to specify predicates in its domain that can be used with PDDL actions
to create plans. However, because BDDL is used for benchmarking, it is process-agnostic and does
not assume any planning method [27]. Therefore, a domain file does not have any effect in BDDL,
so a variable-arity predicate can be specified (rather than potentially infinite fixed-arity versions) to
maintain compactness. This requires no structural changes to BDDL.

D Scene and Object Models

In this section, we provide more details about the object and scene models presented in BEHAVIOR-
1K DATASET, including the selection, modeling, and annotation processes.

The survey outlined in Sec. 2 provided us with a list of 1000 activities that humans prefer robots to
perform. However, these activities are not restricted to a unique type of scene (e.g., houses). We chose
scene types necessary to cover the BEHAVIOR-1K activities, including eight scene types: houses
(15), houses with gardens (8), hotels (3), offices (5), grocery stores (4), generic halls (4), restaurants
(6), and schools (5) (see Table A.4). These scenes cover activities that require a specific type (e.g.,
shopping, cooking, restocking) and activities that are generic and could happen in multiple scene
types (e.g., cleaning). We also annotated how many activities could be performed on each type to
guide us on how many instances of each scene type should we include in BEHAVIOR-1K DATASET.
The main type of scene is still households: we improved 15 household scenes from BEHAVIOR-100
and annotated it further with light sources, new textures, etc. We then acquired additional instances
of each scene type from online marketplaces such as TurboSquid [A10].

Several of the available scene models in the marketplaces did not contain all the necessary rooms to
perform the natural activities in BEHAVIOR-1K, e.g., restaurants did not include the kitchen, offices
did not include the restrooms, or houses did not include the gardens. We collected separated models
for those and contracted professional 3D designers to connect them.

Scene models were acquired with the necessary object models. However, they were not enough to
cover the objects required by the activities in BEHAVIOR-1K. We acquired additional models to
support the activities, as provided by the activity annotation process described in Sec. B, totaling
5,000+ object models from 1,200+ categories. The diversity of the object categories included in the
dataset can be observed in Fig. A.7.

As provided by the 3D vendors, the scene and object models cannot be used directly for the simulation
of the 1000 activities in BEHAVIOR-1K in OMNIGIBSON due to 1) lack of category annotation, 2)
lack (or incorrect) of light sources in scenes, 3) incorrect part segmentation, 4) lack of articulation,
5) missing interactive elements like buttons, 6) lack of a unified canonical frame orientation for
sampling, and 7) poor physical properties for realistic simulation. We manually cleaned and annotated
all scenes and objects to correct these elements.

21

We will publicly release all the scenes and models to be used by other researchers. The models will
be encrypted and only be used within OMNIGIBSON in order to comply with the rights of the model
authors and the vendors’ agreement. The documentation of the annotation process as well as source
code for the pipeline will similarly be released on our website, allowing users to easily import their
own objects and scenes into OMNIGIBSON for use in BEHAVIOR-1K activities.

Scene

Obj.

Syn.

Rm.

22

Type Scene Name Cnt.| Cnt.| Cnt Room Types Example Activities
bathroom, corridor, dining__ room, .
. A L. clean a hot water dispenser, freeze
Beechwood_0_int 136 | 32 8 entryway, kitchen, living_room, A
. i1 lasagna, clean batting gloves
private_ office, utility_room
bathroom bedroom.
. ” ’ 1 kitty litter b t
§ Beechwood_1_int 129 | 21 9 childs_room, closet, corridor, | o oon YOUT WYL HMLer box, store
z . baby clothes, cleaning pet bed
2 playroom, television__room
= - th i t laying cloth t K il
= Benevolence_0_int 1 10 4 bathroom, corridor, empty__room, aying clo .es ou ,.pac a penci
S entryway case, sweeping outside entrance
~ Benevolence_I_int 74 2 5 c‘01fr1dor, dining__room, kitchen, hangujxg blinds, sorting volunteer
9 living__room, storage__room materials, wash baby bottles
> . 1 11: hing fabrics, fold-
<« Benevolence_2_int 63 23 5 bathroom, bedroom, corridor c ean walls, washing 1abrics, 1o
= ing clean laundry
E bathroom, corridor, dining__room, de-clutter your garage, sorting
Thlen_0_int 68 21 7 garage, living_ room, stor- | household items, set up a home
age_room office in your garage
bathroom, bedroom, corridor, din- clean iewels. clean sreen beans
Thlen_1_int 147 27 | 9 ing_room, kitchen, living_room, - » cean g g
. hanging up curtains
staircase
bathroom, childs__room, liv- . s
. . changing dog’s water, wash a bra,
Merom_0_int 82 27 6 ing__room, playroom, stor-
i wash a wool coat
age_room, utility_room
bathroom, bedroom,
Merom_1_int 123 | 28 8 -chllds_room,. corrlld-or, din- store an uncgoked turkey, drying
ing__room, kitchen, living_room, table, clean flip flops
staircase
Pomaria_0_int 71 2 6 bathroom, bedroc'n'.n, corridor, pri- p?epare sea salt. soa%k, clean sheets,
vate__office, television__room dispose of medication
. . 'l?throom, corridor, kitchen, store brownies, clean a book, bak-
Pomaria_1_int 89 24 6 living__room, pantry_room, X !
. ing sugar cookies
utility _room
. . laci 1 t
Pomaria_2_int 42 18 3 bathroom, bedroom, corridor rep acing screens, clean baby toys.
putting up posters
dispose of a pizza box, putting
. h:
Rs_int 72 32 5 b.at room, bedroom, entryway, | g4 fridge, putting out condi-
kitchen, living__room
ments
. . h: in- ke i
Wainscott_0_int 187 35 9 Yaat room, ‘ bedn’)o'm, din- make microwave popcorn, me}ke
ing_room, kitchen, living__room frozen lemonade, make cake mix
bathroom, bedroom, corridor, decorating for religious ceremony,
Wainscott_1_int 150 | 26 10 exercise_room, playroom, pri- stash snacks in your room, disin-
vate_ office, utility_room fect laundry
bathroom, corridor, dining_ room,
g Beechwood_0_garden 335 | 45 9 'entryway, garﬁien, kitchen, li'v— tidy your garden, opening doors,
s ing_room, private_office, util- | wash goalkeeper gloves
5 ity _room
pd bathroom, childs_room, garden, . .
@« . clean your kitty litter box, clean a
9 Merom_0_garden 197 | 51 8 living_room, playroom, sauna,
= 2 glass windshield, hang icicle lights
S storage__room, utility__room
5 bathroom, bedroom, corridor, putting up Christmas lights out-
=1 Pomaria_0_garden 260 | 49 7 garden, private_office, televi- | side, prepare a hanging basket,
:‘2 sion__room clean a patio
g Rs_garden 185 | 47 6 bathroon?, bedrf)gm, entryway, cleaning driveway, clean a long-
[~ garden, kitchen, living__room board, roast nuts
= bathroom, bedroom, din- clean an espresso machine, clear-
E Wainscott_(0_garden 712 | 61 10 ing_room, garden, kitchen, | ing food from table into fridge,
living__room painting porch
bathroom, bedroom,
childs__room, closet, corridor, turning out all lights before sleep,
§ house_single_floor 1375 137 | 23 dining_ room, empty_room, | iron curtains, packing hobby
2 entryway, garden, kitchen, liv- equipment
= ing_room, sauna, utility_room
E house_double_floor_lower 304 | 79 6 bathro-om, co'rr'idor, garage, gar- wash towels, clean a fish, clean
den, kitchen, living_ room brass
th levi- 1 h taki
house_double_floor_upper 305 78 5 b'a room, bedroom, televi C. ean' a saxophone, ing down
sion__room curtains, clean walls
. hol £ k-
3 grocery_store_asian 34020 79 2 bathroom, grocery_store Puy alcoho ,‘buy boxes for pac
5 ing, buy a microwave oven
i grocery_store_cafe 6994 71 4 bar , bathroom, dining_room, dgfrost meat, clean reusable shop-
Z grocery_store ping bags, buy a good avocado
§ washing windows, picking up pre-
5 grocery_store_convenience | 1889 82 2 bathroom, grocery_store scriptions, buy food for vegetari-

ans

buying gardening supplies, buy
grocery_store_half_stocked | 3804 51 2 bathroom, grocery__store basic garden tools, buy boxes for
packing
hall_arch_wood 78 11 2 bathroom, empty__room clean walls
= hall_train_station 141 15 2 bathroom, empty__room clean cement
E hall_glass_ceiling 116 | 20 2 bathroom, empty__room preparing food for a fundraiser
hall_conference_large 3372 26 2 bathroom, conference__hall distributing event T-shirts
. turning on the hot tub, adding

K% hotel_gym_spa 322 | 43 9 bathroom, corridor, gym , ham- chemicals to hot tub, clean a

D mam , locker _room , sauna, spa

2 sauna

= hotel_suite_large 218 | sl 2 bathroom, bedroom clean vinyl shutf:ers, cleaning com-

puter, clean white marble
hotel_suite_small 48 28 2 bathroom, bedroom clean cork mats, putting out clean
towels, clean a shower
set up a webcam, set up two com-
office_bike 479 | 49 3 bathroom, break_room, puter monitors, clean an office
shared _ office .

4] chair

é bathroom, conference__hall,

o office_cubicles_left 787 | 44 12 copyA_room, corrld.or, lobby, clean up on\.11' desk, clean a LED
meeting__room, private__office, | screen, laying out snacks at work
shared_ office
bathroom, conference__hall,

office_cubicles_right 406 | 37 1 copy-_room, corrld.or, lobby, making photocopies, clean a LED
meeting__room, private_ office, screen, clean a keyboard
shared_ office
bathroom, break_room, con-
ference_hall, copy_room, cor- emptying trash cans, putting
office_large 1151] 46 24 ridor, lobby, meeting_room, | meal in fridge at work, brewing
phone_room, private_ office, coffee
shared_ office
bathroom. break room. meet clean a computer monitor, make
office_vendor_machine | 225 | 45 4 X ’ - ? the workplace exciting, dispose of
ing__room, shared_ office
glass
restaurant_asian 1221] 56 3 bathroom, dining__room, kitchen grill vegetables, cook tofu, clean

;] clams

= — - -

s restaurant_brunch 1096 70 4 b.ar , bathroom, dining_room, stock a bar, cook squid, washing

2 kitchen vegetables

g clean a popcorn machine, store

-7 restaurant_cafeteria 292 | 45 3 bathroom, dining_ room, kitchen coffee beans or ground coffee,

roast meat
. s sweeping floors, installing smoke
restaurant_diner 174 | 39 3 bar , bathroom, dining_ room
detectors, clean a lobster
restaurant_hotel 108 81 4 bathroom, dining__room, kitchen, clean egg;, setting table for coffee,
lobby clean a pizza stone
restaurant_urban 1368 90 4 bér , bathroom, dining_room, cook) pumpkin seeds, putting
kitchen roast in oven, thaw frozen fish
school_biology 717 | 53 4 bathroom, biology_lab, corridor clean an eraser, tu'rnmg sprinkler

" off, clean a glass pipe

'—o' T o T

E school_chemistry 890 | 69 4 bathroom, chemistry_lab , corri clean clear Plastlc, clean an eraser,

S dor clean a whiteboard

175) n

. bathroom, computer_lab, corri- clean a computer monitor, prAe
school_comp_lab_infirmary | 828 | 61 6 . pare an emergency school Kkit,
dor, infirmary
clean a keyboard
school_geography 556 | 42 5 bathroom, classroom, corridor clean gold, clean a glass pipe,
clean an eraser
school_gym 853 | 36 7 bathroom, corridor, gym clean a dirty baseball, dispose of
locker _room glass, wash towels

Table A.4: Statistics and information for each of 50 scenes in B1K: scene type, name, number of objects, unique
synsets and rooms, room types, and example activities

E Simulation

E.1 Extended Object States and Logical Predicates in OMNIGIBSON

OMNIGIBSON extends the infrastructure of extended object states and logical predicates from iGibson
2.0 [59] to accommodate the diversity and realism of BEHAVIOR-1K.

E.1.1 Extended object states associated with object category properties

For computational efficiency purposes, not all extended object states need to be maintained and
updated for every object. For example, cookable objects like apples need to keep track of their
Temperature, but probably tables don’t need to, at least for the purpose of simulating BEHAVIOR-
1K activities. Hence, given the object category property annotation from BEHAVIOR-1K DATASET
(see Table A.1), OMNIGIBSON selectively keeps track of a subset of the extended states for objects

23

of each category. The mapping from the object category property to the required object states can be
found in Table A.S.

Object category property Required extended object states
cookable MaxTemperature, Temperature
overcookable MaxTemperature, Temperature
freezable Temperature

flammable Temperature

heatable Temperature

metable Temperature

soakable SoakedLevel

toggleable ToggledState

sliceable SlicedState

breakable BrokenState

heatSource ToggledState

fireSource ToggledState

coldSource ToggledState

waterSource ToggledState

Table A.5: Extended object states associated with object category properties. Adapted from [59].

E.1.2 Object model properties

We also need to perform physical and semantic annotation for each object model so that they can
be realistically simulated and support the evolution of extended object states. Some of the physical
properties can be programmatically generated from the 3D assets, such as Shape, KinematicStruc-
ture and StableOrientations, while others need to be annotated (included in BEHAVIOR-1K
DATASET), such as Weight. Type of an object model, which is also derived from the object category
property annotation from BEHAVIOR-1K DATASET (see Table A.1), determines how the object
will be simulated in OMNIGIBSON. For example, cloths and fluids will be simulated using underlying
particle systems. Also, some of the object category property requires additional semantic annotation
for each model of that category, e.g. for waterSource objects, WaterSourceLink is required to
indicate the exact location to generate water. An exhaustive list of all the object model properties can
be found in Table A.6.

E.1.3 Object states

While the object properties mentioned above stay the same during simulation (i.e. an apple is always
cookable and a sink always have the same WaterSourceLink defined in its local frame), the object
states could change. The underlying physics engine handles the kinematic state changes, such as Pose,
AABB, JointStates, ParticlePositions for fluids and cloths, etc. On top of these, OMNIGIBSON
handles the non-kinematic state changes that are essential for logical predicates (described in the next
subsection). For example, OMNIGIBSON update the Temperature of objects at every simulation
step by checking if they are near/inside any heatSource or coldSource. An exhaustive list of all the
object states can be found in Table A.7.

E.1.4 Logical predicates as checking functions

For each logical predicate that is relevant for BEHAVIOR-1K activities, we define a checking function
that maps a given physical state (kinematic and non-kinematic) into a binary logical state that BDDL
operates on. For example, OnTopOf is based on the pose of two objects and their contact information
whereas Cooked is based on the Temperature. The details of the checking functions for all the
logical predicates can be found in Table A.8.

E.1.5 Logical predicates as sampling functions

For each logical predicate that is relevant for BEHAVIOR-1K activities, we also define a generative
function that samples a valid physical state given a binary logical state. This functionality is essential
for infinite activity initialization. For example, if the initial conditions of the activity require a plate to
be OnTopOf a dining table, there are an infinite number of exact poses of the plate that can satisfy
this condition. Our generative functions will find a valid solution and physically put the plate on top

24

Object model property Relevant object category Description
property

Shape Model of the 3D shape of each link of the object

Weight Weight of the object

CenterOfMass Mean position of the matter in the object

MomentOfInertia Resistance of the object to change its angular velocity

X . Structure of links and joints connecting them in the form of URDF (non-

KinematicStructure . . .
articulated objects are composed of one link)

StableOrientations A list of stab_le orientations assuming the object is placed on a flat surface,
computed using a 3D geometry library

HeatSourceLink heatSource Virtual (non-colliding) fixed link that generates heat

FireSourceLink fireSource Virtual (non-colliding) fixed link that generates fire

CleaningToolLink cleaningTool Fixed link that needs to contact dirt particles for the tool to clean them

WaterSourceLink waterSource Virtual (non-colliding) fixed link that generates water

WaterSinkLink waterSource Virtual (non-colliding) fixed link that absorbs water

TogglingLink toggleable Virtual (non-colliding) fixed link that changes the toggled state of the object
when contacted

SlicingLink slicing Tool Fixed llqk that changes the sliced state of another object if it contacts it with
enough force

RelevantJoints openable List of joints that are relevant to indicate whether an object is open

AttachmentKeypoints assembleable List of keypoint locations that will be connected with those of other objects
when they are close enough

ClothKeypoints foldable, unfoldable List of keypoint locatlnqs are usAe‘d to deterrpme if the object is folded (if they
are close enough) or unfolded (if they are far enough)

ContainerVolume fillable Vmua}l (non-colliding) fixed link that represents the inner volume of a fillable
container.

Tyoe ‘ilj?h;od:for?a;izlsﬂg Type of the object, e.g. rigid body, fluid, physical/visual substance, cloth,

TP > TOPS, Py deformable, which determines how it will be simulated in OMNIGIBSON
stance, visualSubstance

Table A.6: Permanent object model properties. Adapted from [59].

of the table. Other examples include setting the Temperature of an object to make it Frozen or the
joint configuration of an object to make it Open. The details of the sampling functions for all the
logical predicates can be found in Table A.8.

E.2 AMT Visual Realism Study

We conducted an Amazon Mechanical Turk (AMT) study to evaluate OMNIGIBSON’s relative
visual realism compared to multiple other simulation environments. We selected 50 representative
1280 x 720 images from OMNIGIBSON, AI2-Thor, ThreeDWorld, Habitat 2.0, and iGibson 2.0, and
shuffled them randomly into 50 groups of 5 images, where each group contained a unique image
from each simulation environment. For each group, participants were asked to rank the images in
terms of visual realism, assigning the most realistic images of the group 1, and subsequent images
2, ..., 5. Image shuffling was randomized between participants. When presenting our results, we
invert the aggregated mean and standard deviation across 60 participants, such that a score of a 5
would represent the most visually realistic images.

Our criteria for selecting the images are the following: (a) we only included photos taken from fully
interactive scenes for a fair comparison, and (b) rendering must come from within the simulation
environment, without customized tuning (i.e. new users can expect this visual quality off-the-shelf
with minimal adjustment).

E.3 Visual Modalities

OMNIGIBSON provides diverse perceptual modules to capture realistic sensor modalities from an
agent’s perspective, including RGB, Depth, Semantic Segmentation, Normal, and Optical Flow
images, in addition to non-visual modalities such as proprioception and LiDAR scans (Fig. A.8).
OMNIGIBSON also provides varying abstraction levels for agent action spaces, including low-level
control, assistive manipulation, and primitive skill execution. Overall, these modules are intended to
be useful to the broad embodied Al research community, with the goal of accelerating breakthroughs
on BEHAVIOR-1K.

E.4 Performance Benchmark

To evaluate the performance of OMNIGIBSON under different conditions, we performed rigorous
speed test in two representative scenes (Rs_int and restaurant_hotel) with different number of

25

Object State Description and Update Rules

6 DoF pose (position and orientation) of the object in world reference frame, updated by the

Pose . . .
underlying physics engine.
Axis-aligned bounding box (coordinates of two opposite corners) of the object in the world
AABB . . .
reference frame, updated by the underlying physics engine.
. State of all internal DoFs of the (articulated) object for the structure defined by Kinematic-
JointStates . . .
Structure, updated by the underlying physics engine.
ParticlePositions Posmons of all the underlying particles for cloth and fluid, updated by the underlying physics
engine.
InContactObjs Llst' of all objects in physical contact with the object, updated by the underlying physics
engine.
ConnectedObjs List of all objects that are connected to the object, either via a fixed joint for rigid bodies or

via an attachment for cloth and deformables.

List of all objects in the positive vertical axis drawn from the object’s center of mass, updated

InSamePositiveVertical AxisObjs by shooting a ray upwards in the positive z-axis and gather the objects hit by the ray.

List of all objects in the negative vertical axis drawn from the object’s center of mass, up-
InSameNegativeVertical AxisObjs dated by shooting a ray downwards in the negative z-axis and gather the objects hit by the
ray.

List of all objects in the horizontal plane drawn from the object’s center of mass, updated by

InSameHorizontalPlaneObjs shooting a number of ray in the x-y plane and gather the objects hit by the rays.

Object’s current temperature in °C, updated by detecting if the object is affected by any heat

Temperature, T° .
P ’ source or heat sink.

Maximum temperature of the object reached historically during this simulation run, updated

MaxTemperature, Ta by keeping track of all the Temperature in the history.

Amount of liquid absorbed by the object corresponding to the number of liquid particles
SoakedLevel, w contacted, updated by detecting if the object is in contact with any liquid particle. This is
maintained for every type of liquid separately.

Amount of visualSubstance that covers the object, updated by detecting if the particles of
the visualSubstance are in contact with anything that can potentially remove them from
the object, e.g. cleaningTool. This is maintained for every type of visualSubstance
separately.

CoveredLevel, ¢

Binary state indicating if the object is currently on or off, updated by detecting if the agent

ToggledState, TS is in contact with the TogglingLink.

Binary state indicating whether the object has been sliced (irreversible), updated by detecting
if the object is in contact with any SlicingTool that exerts a force above a certain threshold
Fliced. We assume as default force threshold of Fyyceq = 10N, a value that can be
configured per object category and model.

SlicedState, SS

Binary state indicating if the object is broken, updated by detecting if the object has a contact
BrokenState, BS force with any other object above a certain threshold Fl,oen . a value that can be configured
per object category and model.

Table A.7: Object states maintained by OMNIGIBSON. Adapted from [59].

objects on a single-GPU, single-process setup. We adopt the “idle” setup from Li et al. [59] and Szot
et al. [26]: a robot is placed in the scene (except the last row "- Robot"), and stays still with zero
velocity action. At each time step, the simulator runs the physics simulation, extended object state
update, and transition machine update loop, and renders a 128 x 128 RGB image. We use action
time step of t, = 3—10s and physics time step of t; = ﬁs to be consistent with previous works. Our
benchmark runs on a Ubuntu machine with Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz and one

Nvidia GeForce 2080 Ti GPU in a single process setting. The results are summarized in Table A.10.

OMNIGIBSON runs at a comparable speed to previous works like iGibson 2.0 [59] under similar
settings, but with much higher rendering quality thanks to ray-tracing. It maintains a reasonable speed
even for a large scene with over 800 objects. OMNIGIBSON is also highly configurable and provides
flexible interface for users to balance between simulation fidelity and speed given their use cases and
research interests. If the user isn’t interested in fluid or cloth in their tasks, they can turn off these
features to harvest performance speedup. Similarly, if the user is only interested in kinematics-only
rearrangement tasks, or non-robotics embodied Al applications (e.g. a virtual camera), they can turn
off object state update, or remove the robot, respectively. We haven’t conducted any performance
optimization, and we are actively working on improving aspects that can provide immediate and
significant speedups, e.g. in areas like object sleeping, mesh simplification, more efficient object
state update. Furthermore, since real-time ray-tracing and fluid/cloth simulation is still an active
area of research, we expect the upcoming hardware and software advances from Nvidia will lead to
significant performance improvements in these areas.

26

Predicate

Description

InsideOf(01,02)

Object 07 is inside of object o2 if we can find two orthogonal axes crossing at o; center of mass
that intersect oo collision mesh in both directions.

OnTopOf(01,02)

Object 01 is on top of object o2 if oo € InSameNegativeVerticalAxisObjs(o1) A
02 Z InSamePositiveVerticalAxisObjs(o1) A InContactWith(o1,02), where
InSamePositive/NegativeVerticalAxisObjs(o1) is the list of objects in the same posi-
tive/negative vertical axis as 01 and InContactWith (o1, 02) is whether the two objects are in
physical contact.

NextTo(o1,02)

Object 07 is next to object o2 if 02 € InSameHorizontalPlaneObjs(01) A [2(01,02) <
t Next To, Where InSameHorizontalPlaneObjs (o1) is a list of objects in the same horizontal plane
as 01, [2 is the L2 distance between the closest points of the two objects, and ¢y 7o is a distance
threshold that is proportional to the average size of the two objects.

InContactWith(o1,02)

Object o7 is in contact with oq if their surfaces are in contact in at least one point, i.e., 02 €
InContactObjs(01).

ConnectedWith(o1,02)

Object o is connected with o3 if 02 € ConnectedObjs(o1).

Under(01,02)

Object 07 is under object og if 02 €
InSameNegativeVertical AxisObjs(01).

InSamePositiveVerticalAxisObjs(01) Aoz &

OnFloor(o1,02)

Object o7 is on the room floor o2 if InContactWith (o1, 02) and o3 is of Room type.

Open(o)

Any joints (internal articulated degrees of freedom) of object o are open. Only joints that are relevant
to consider an object Open are used in the predicate computation, e.g. the door of a microwave but
not the buttons and controls. To select the relevant joints, object models of categories that can be
Open undergo an additional annotation that produces a RelevantJoints list. A joint is considered
open if its joint state g is 5% over the lower limit, i.e. ¢ > 0.05(qupperLimit — dLowerLimit) +
qLowerLimit-

Cooked(o)

The temperature of object o was over the cooked threshold, Tcookeqd, and under the burnt threshold,
Tpurnt at least once in the history of the simulation episode, i.e., Teooked < T " < Thurns- We
annotate the cooked temperature T',keq fOr each object category that can be Cooked.

Burnt(o)

The temperature of object o was over the burnt threshold, T%,,,,¢, at least once in the history of the
simulation episode, i.e., T > Thyrm¢. We annotate the burnt temperature 1., for each object
category that can be Burnt.

OnFire(o)

The temperature of object o is above the on-fire threshold, T, fire, i.6., To < Tonfire. We assume
as default on-fire temperature Tonsire = 300°C, a value that can be adapted per object category
and model.

Frozen(o)

The temperature of object o is under the freezing threshold, Trozen, 1.€., To < Tfrozen. We assume
as default freezing temperature Tfrozcn = 0° C, a value that can be adapted per object category and
model.

Heated(o)

The temperature of object o is above the heated threshold, Theqted, .., To < Theated- We assume
as default heated temperature Theqeq = 75° C, a value that can be adapted per object category and
model.

Boiled(1)

The temperature of liquid ! is above the boiling point, Thyited, i-€.. To < Thoited- We assume as
default boiling point Thyiting = 100°C, a value that can be adapted per object category and model.

Soaked(o, 1)

The soaked level w of the liquid ! for the object o is over a threshold, wseaked i.€., W > Wgoaked-
The default value for the threshold is wgakea = 50, (the object is soaked if it absorbs more than
50 liquid particles), a value that can be adapted per object category and model and per liquid type.

Filled(o, 1)

Object o is filled by liquid if the number of particles of [that is inside the ContainerVolume of
o is above a certain threshold percentage of the total volume. The default value for the threshold is
Wilted = 0.5.

Covered(o, s)

For visualSubstance s, check if the covered level ¢ of s for the object o is over a threshold,
Ceovereds 1.€., C > Ceovered; fOr physicalSubstance s, check if the number of particles of s that
are in contact with the object o is over the same threshold. The default value for the threshold is
Ceovered = D0 (50 substance particles), a value that can be adapted per object category and model,
and per substance.

ToggledOn(o) Object o is toggled on or off. It is a direct query of the object’s extended state T'S, the toggled state.
Sliced (o) Object o is sliced or not. It is a direct access of the object’s extended state S.S, the sliced state.
Broken(o) Object o is broken or not. It is a direct access of the object’s extended state B.S, the broken state.
Folded (o) Object o is folded if its corresponding ClothKeypoints are sufficiently close to each other.
Unfolded (o) Object o is unfolded if its corresponding ClothKeypoints are sufficiently far from each other.
Object o is assembled if all of its parts have been correctly connected: every pair of parts p; and
Assembled(o) pj are connected (or not) with each other (i.e. IsConnected(p;, Dj)) in a specific way defined by

each object model.

Hung(o1,02)

Object o1 is hung onto object o if they are connected, IsConnected (o1, 02).

Blended(o; ... 0,)

Objects 01 to 0y, are blended if they are in contact with each other, i.e. InContactWith(o0;, 0;)
for all pairs.

Object o is in the field of view of the agent, i.e., at least one pixel of the image acquired by the

InFoVOfAgent(o) agent’s onboard sensors corresponds to the surface of o.
InHandOfAgent(o) Object o is grasped by the agent’s hands (i.e. assistive grasping is activated on that object).
InReachOfAgent(o) Object o is within deqcn, = 2 meters away from the agent.

InSameRoomAsAgent(o)

Object o is located in the same room as the agent.

Table A.8: Logical Predicates: Description of the checking functions. Adapted from [59].

27

Predicate

Sampling Mechanism

InsideOf(01,02)

Only InsideOf(01,02) = True can be sampled. 0, is randomly sampled within oz using a ray-
casting mechanism adopted from [27]. oy is guaranteed to be supported fully by a surface and free
of collisions with any other object except 02.

OnTopOf(o1,02)

Only OnTopOf(01,02) = True can be sampled. o; is randomly sampled on top of oo using a
ray-casting mechanism adopted from [27]. oy is guaranteed to be supported fully by a surface and
free of collisions with any other object except o2.

ConnectedWith(o1,02)

Create a rigid joint between the two objects if they are both rigid bodies, or an attachment between
them otherwise.

Under(o1,02)

Only Under(01,02) = True can be sampled. o; is randomly sampled on top of the floor region
beneath o2 using a ray-casting mechanism adopted from [27]. o7 is guaranteed to be supported
fully by a surface and free of collisions with any other object except the floor.

OnFloor(01,02)

Only OnFloor(o1,02) = True can be sampled. o7 is randomly sampled on top of 02, which
is the floor of a certain room, using the scene’s room segmentation mask. o is guaranteed to be
supported fully by a surface and free of collisions with any other object except 0s.

Open(o)

To sample an object o with the predicate Open(o) = True, a subset of the object’s relevant joints
(using the RelevantJoints model property) are selected, and each selected joint is moved to a
uniformly random position between the openness threshold and the joint’s upper limit. To sample
an object o with the predicate Open(o) = False, all of the object’s relevant joints (using the
RelevantJoints model property) are moved to a uniformly random position between the joint’s
lower limit and the openness threshold.

Cooked(o)

To sample an object o with the predicate Cooked(o) = True, the object’s MaxTemperature is
updated to max (7", Teooked). Similarly, to sample an object o with the predicate Cooked(o)
= False, the object’s MaxTemperature is updated to min(7,""", Teooked — 1).

Burnt(o)

To sample an object o with the predicate Burnt(o) = True, the object’s MaxTemperature is
updated to max(T)"*", Tyyrpe). Similarly, to sample an object o with the predicate Cooked(o)
= False, the object’s MaxTemperature is updated to min(7,""", Tyyrnt — 1).

OnFire(o)

To sample an object o with the predicate OnFire(o) = True, the object’s Temperature is updated
to a uniformly random temperature between T fire + 10 and Ty fire + 50. To sample an object o
with the predicate OnFire(o) = False, the object’s Temperature is updated to T fire — 1.

Frozen(o)

To sample an object o with the predicate Frozen(o) = True, the object’s Temperature is updated
to a uniformly random temperature between Tfyozen — 10 and Tfpozen — 50. To sample an object
o with the predicate Frozen(o) = False, the object’s Temperature is updated to Tfozen + 1.

Heated(o)

To sample an object o with the predicate Heated(o) = True, the object’s Temperature is updated
to a uniformly random temperature between Theated + 10 and Theqted + 50. To sample an object
o with the predicate Heated(o) = False, the object’s Temperature is updated to Theqteqa — 1.

Boiled(1)

To sample a liquid type [with the predicate Boiled(l) = True, the Temperature of all particles
of [is updated to a uniformly random temperature between Tpoijeq + 10 and Thpieq + 50. To
sample a liquid type [with the predicate Boiled(o) = False, the Temperature of all particles of
{ is updated to Thpizeq — 1.

Soaked(o, 1)

To sample an object o and a liquid type [with the predicate Soaked(o, 1) = True, the object’s
SoakedLevel w for [is updated to match the Soaked threshold of weakeq. To sample an object
o and a liquid type ! with the predicate Soaked(o, 1) = False, the object’s SoakedLevel w is
updated to 0.

Filled(o, 1)

To sample an object o and a liquid type [with the predicate Filled(o, 1) = True, an appropriate
number of particles of I are sampled inside the ContainerVolume of o so that they fill up enough
of its volume (> wgyeq = 0.5). To sample an object o and a liquid type I with the predicate
Filled(o, 1) = False, all particles of [that are inside the ContainerVolume of o (if any) are
removed.

Covered(o, s)

To sample an object o and a substance s with Covered(o, s) = True, a fixed number of particles
of s are randomly placed on the surface of o using a ray-casting mechanism adopted from [27]. To
sample an object o and a visualSubstance s with Covered(o, s) = False, all particles of s is
removed from o and the corresponding CoveredLevel is set to 0.

ToggledOn(o) The ToggledState of the object is updated to match the required predicate value.

The SlicedState of the object is updated to match the required predicate value. Also, the whole
Sliced(o) object are replaced with the two halves, that will be placed at the same location and inherit the

extended states from the whole object (e.g. Temperature).

The BrokenState of the object is updated to match the required predicate value. Also, the whole
Broken(o)

object is broken down into pieces, that will be placed at the same location.

Table A.9: Logical Predicates: Description of the sampling functions. Adapted from [59].

F Baselines Details

In this section, we include additional information about the baselines evaluated and analyzed in the
main paper: the visuomotor control baseline and two variants of the baselines using action primitives,
with and without the history of observations.

F.1 Network Architecture

For RL-Prim. and RL-Prim.Hist. that use PPO as the underlying RL algorithm, the architecture
consists of a visual feature extractor that takes the egocentric visual observation as input and a state
encoder neural network which takes whether the robot is grasping an object or not as input. The image

28

Scene

Eval. Conditions Rs_int (60 objs) restaurant_hotel (808 objs)

Full Feature Set 13 5
- Fluid and Cloth 63 16
- Object State Update 119 47
- Robot 232 54

Table A.10: Benchmarking OMNIGIBSON performance: simulation steps per second (SPS, higher better) in two
representative scenes with 60 and 808 objects, under different evaluation conditions.

input is normalized using a per-channel moving average. These two encodings are passed into an
MLP module, which is then processed by a value head to predict the value for the given observations
and an action head to produce a discrete action that corresponds to an action primitive executed on an
object. The size of input images is 128 x 128 x 3. The feature extractor is a sequential architecture
of Conv-ReLU-MaxPooling-Flatten. MLP converts the feature into a 128-dimensional vector. The
details of RL-Prim.’s network architecture is illustrated in Fig. A.11 (b). For RL-VMC that uses
SAC as the underlying RL algorithm, we use the same feature extractor as RL-Prim.. RL-VMC
consists of an actor network, a critic network, and a target critic network. All of them are MLPs with
ReLU activation functions. Fig. A.11 (a) illustrates the details of RL-VMC’s network architecture.
RL-VMC has the continuous action space and outputs low-level control actions directly.

F.2 Task settings

Fig. A.9 depicts the three activities we consider in our experiments:

» StoreDecoration: a tidying activity where the agent must pick up and store Halloween decora-
tions into a cabinet operating articulated objects. Action space: navigate, pick, place, push.
The goal is to store two pumpkins into a drawer (see Fig. A.9 (a)).

* CollectTrash: A collecting activity that requires the agent to gather empty bottles and cups
and throw them into a trash bin. Action space: navigate, pick, place. The goal is to throw two
bottles and two cups into a trash bin (see Fig. A.9 (b)).

e CleanTable: A cleaning activity that involves challenging cloth manipulation and fluids for

table cleaning. Action space: navigate, pick, dip, wipe. The goal is to cleaning a table with a
soaked cloth (see Fig. A.9 (c)).

Each activity takes place in a different BIK scene, Rs__int, mockup__apt, and restaurant__hotel.
F.3 Training details

Learning objectives. For RL-Prim. and RL-Prim.Hist., we use an on-policy reinforcement learning
algorithm Proximal Policy Optimization (PPO). @ is the policy parameter, E, denotes the empir-
ical expectation over timesteps. 7 is the ratio of the probability under the new and old policies,
respectively. A, is the estimated advantage at time ¢. € is the clipping hyperparameter. The objective
function of PPO is shown in Equation 1:

CCLIP(H) =F, [min rt(Q)At, cip(r:(0),1 —e, 1+ e)/lt]. (1

For RL-VMC, we use Soft Actor Critic (SAC) algorithm. The objective function is shown in
Equation 2:

o0
©* = argmax Ervr | Y 3" (Rst, ar, s001) + H (n(-[s1)) | |)
s
t=0
where « is the coefficient that determines the weight of two terms and H denotes the entropy.

Reward function. We use the success signal provided by the BDDL activity definition as the reward
function for training the policy in all methods. For instance, in the StoreDecorations task, the BDDL
task goal definition is Forall(decoration){Inside(decoration, cabinet)}. The agent receive a
positive signal if and only if one of the decoration is physically placed inside the drawer of the
cabinet. This is a challenging sparse reward setting since the agent needs to plan multiple steps to
reach the final goal without any intermediate subgoal rewards (e.g. push open the drawer must take
place before pick and place the decoration, but no reward signal will be given to the push open
action).

29

Learning Rate 0.0003

Learning Rate 0.0003 Buffer S.1ze 300
. Batch Size 64
Buffer Size 300 .
. Discount (v) 0.99
Batch Size 64

. GAE Parameter v, 0.99
Discount (7) 0.99 Clipping Parametgr € 0.2

Soft Update Coefficient | 0.005 Entropy Coeff ¢, 0.0
Table A.11: Hyperparameters of SAC for the VF Coeft cz 0.5

RL-VMC baseline
Table A.12: Hyperparameters of PPO for the

RL-Prim. and RL-Prim.Hist. baselines

Hyperparameters. The hyperparameters for SAC and PPO in the baselines are summarized in
Table A.11 and Table A.12. Both SAC and PPO are trained for 30,000 time steps. We train with
seeds 0, 1, 2 and evaluate with seed 0.

Computation. For each run of our experiments, we use either a single Nvidia GeForce RTX 2080
Ti or a single Nvidia RTX A-6000 GPU, together with Intel Xeon CPU, and 40GB of RAM. During
training, the GPU memory usage is around 9GB. Depending on which task, the total training iterations
range between 10k to 25k, and the total wall-clock training time range between 3.75 to 7.5 hours.

F.4 Action Primitives

BEHAVIOR-1K activities are long-horizon which require hundreds if not thousands of environment
steps (low-level robot control signals) to be completed. A way to overcome this challenge (e.g.,
reinforcement learning) is to modify the original action space with a set of action primitives, i.e., time-
extended actions that correspond to multiple low-level commands and that achieve some expected
outcome, such as grasping an object or navigating to a location. For our baselines, we defined six of
these primitives, and implemented them using a sampling-based motion planner.

All the primitives are compositional: collision-free paths of the entire robot to navigate to a location,
collision-free paths of the robot’s arm to reach a 6D __pose with the end-effector, or a predefined arm
joint configuration, trajectories where the end-effector follows a line in Cartesian space, possibly
colliding/interacting with the environment, and sequences of actions to open/close the robot’s gripper
while holding the position. All manipulation primitives start with a trajectory to move the arm from a
tucked configuration (folded arm) to an untucked configuration to enable subsequent arm interaction,
and end with the inverse motion, from untucked to tucked configuration, to allow subsequent collision-
free navigation. The action primitives take as parameter an object to apply the action on; we assume
access to the 3D position of the objects to obtain the necessary parameters to query the motion planner.
This procedure is replicated on the real robot, where we combine detections from YOLO [70] with
information from the depth map of the RGB-D images to obtain the parameters (see Sec. G). For the
navigation actions, we assume a set of known relevant locations to navigate to (next to the rectangles
in Fig. A.9)

The primitives we used in our experiments can be seen in Fig. A.10 and include:
a) navigate: Collision-free trajectory of the entire robot to a location.

b) pick: Composition of 1) a trajectory to a pre-grasp 6D _pose above the object to pick, 2) a
line trajectory in Cartesian space down towards the object, interrupted when there is contact,
3) a closing action, 4) a first retracting trajectory following a line upwards, and 5) a second
retracting trajectory to reach the untucked joint configuration. The primitive only executes if the
robot is not currently picking another object.

¢) place: Composition of 1) a trajectory to a pre-place 6D __pose above the object to place the
grasped object on, 2) an opening action, 3) a second retracting trajectory to reach the untucked
joint configuration. The primitive only executes if the robot is currently holding an object.

d) push: Composition of 1) a trajectory to a pre-push 6D __pose above the object to push-open, 2)
a line trajectory in Cartesian space down towards the object, interrupted if there is contact, 3)
a line trajectory in Cartesian space to push-open the object, e.g., towards the robot, 4) a first
retracting trajectory following a line upwards, and 5) a second retracting trajectory to reach the
untucked joint configuration.

e) dip: Composition of 1) a trajectory to a pre-dip 6D _pose above the object to dip into, 2) a line
trajectory in Cartesian space down towards the object to dip, 3) a line trajectory in Cartesian

30

space upwards, and 4) a retracting trajectory to reach the initial joint configuration. The primitive
only executes if the robot is currently holding an object.

f) wipe: Composition of 1) a trajectory to a pre-wipe 6D _pose above the object to wipe, 2) a
line trajectory in Cartesian space down towards the object to be wiped, interrupted when there is
contact, 3) a line trajectory in Cartesian space horizontally to wipe left-right, 4) a line trajectory
in Cartesian space horizontally to wipe towards the robot, 4) a first retracting trajectory following
a line upwards, and 5) a second retracting trajectory to reach the untucked joint configuration.
The primitive only executes if the robot is currently holding an object.

F.5 Additional Metrics: success score Q

The success score Q [27] for each task is reported in Table A.13. We observe the same trend in Q as
in the success rate. This is another indication of the effectiveness of our approach.

Method Policy Features Success score Q
Primitives History | StoreDecoration CollectTrash CleanTable
RL-VMC % X 0.0+0.0 0.0+0.0 0.0+0.0
RL-Prim. v P 0.50 +£0.05 0.49+0.04 0.77+£0.08
RL-Prim.Hist. v v 0.59£0.03 0.68 £+ 0.02 0.88 +0.02

Table A.13: Performance of three baseline methods, in terms of the success score Q.

G Details of the Real-World Setup

Scene. Our real-world experiments take place in a mockup studio-apartment in our lab that includes a
bedroom, living room, and dining area. This real-world scene was modeled with a digital counterpart
in simulation for BEHAVIOR-1K: the mockup_apt scene. Fig. 5 depicts both real and digital twin
side-by-side. The digital model has been created by first, scanning the real-world apartment using
a phone and commercial software [A11], then, replacing and projecting the texture of walls, floors,
and ceilings, and finally, replacing the existing objects with 3D models from our BEHAVIOR-1K
DATASET. This process should minimize the effect caused by differences between the real world and
the 3D model. The simulated and the real robot use the same 2D map of the scene for localization. In
this way, 2D locations in the real world correspond to the same 2D locations in simulation.

Robot platform. We use in our experiments a Tiago++ model from PAL Robotics, with an omnidi-
rectional base, two 7-degrees-of-freedom arms with parallel-yaw grippers, a 1-degree-of-freedom
prismatic torso, two SICK LiDAR sensors (back and front of the base), and an ASUS Xtion RGB-D
camera mounted on the robot’s head, which can be controlled in yaw and pitch. All sensors and
actuators are connected through the Robot Operating System, ROS [A12]. The code runs on a laptop
with an Nvidia GTX 1070 that sends the commands to the onboard robot computer to be executed.

Action primitives on the real robot. We implemented a version of the action primitives navigate,
pick and place on the real robot similar to their implementation in OMNIGIBSON. For navigation,
we use a 2D sampling-based motion planner on the 2D map we use for localization and that has been
created from the 3D model of the apartment. For manipulation in the real world, we need to obtain the
parameters necessary to plan the manipulation primitives (pick and place) from the sensor signals.
To do that, we first obtain detections from a YOLO v3 [70] object detector on the RGB images from
the robot’s camera. If the robot attempts to execute an action primitive on an object that has not been
detected, we return failure (Object Detection Failure in our analysis). If the object to manipulate has
been detected, we query the pixels in the depth map corresponding to the 21 x21 window at the center
of the detection bounding box, and use this information to compute the centroid of the corresponding
3D points. This location will be used as an object location for grasping or placing. This information
is enough to create a sequence of paths using a sampling-based motion planner (RRT [62]) similar to
the ones used in simulation. The motion planner uses a voxel representation of the scene obtained
from the depth sensor.

Experimental setup. We randomized three parameters in our real robot experiments: the initial
location of the robot (chosen from the three possible activity locations), the positions of the objects
on the table, and the orientations of the objects (upright or lying down). The experiment runs
cover uniformly these parameters. Additionally, for vision-based policies, we evaluated two lighting

31

conditions: full lighting (including the ceiling) and only lamps. Failures are defined as follows:
Motion planning failures occurred when the robot was unable to plan an end effector trajectory
to complete the action primitive. This includes failures caused by navigation noise, where after
navigating to the task location, the robot was too far away from the target object to execute the pick
or place action. Grasping failures include errors that occurred during the execution of the grasp
such as pushing the object off the table while attempting a grasp or losing the object because it slips
out, as well as the robot dropping the object after grasping it. Placing failures include the robot
dropping the object in the wrong location. Object detection failures primarily resulted from our object
detector, YOLO v3 [70], failing to detect the object to interact with; a second, less common, object
detection failure corresponds to the depth camera returning invalid measurements for the detected
object. Finally, we consider policy failures when the policy selects the same invalid action three
times in a row, e.g., requesting to navigate to the bin when it is already in front of the bin. The main
policy error corresponds to the policy repeatedly choosing the same action primitive. We observed
empirically that, even though the policy selection presents some small randomness when the policy
requests the same invalid action three times in a row, most subsequent calls will be also the same
invalid action and we decide to terminate early.

G.1 Further Characterization of the Sim-Real Gap

We performed additional experiments to characterize the gap between simulation and the real world.
In our experiments, we moved the robot to different locations in the mockup__apt scene and
collected real sensor signals: RGB images, depth maps, and LiDAR measurements. We then moved
the robot in simulation to the same locations and collected virtual sensor signals. Some of the images
are depicted in Fig. A.12. We observe that, thanks to our highly realistic models, OMNIGIBSON
provides high-fidelity sensor signals that approximate the real-world ones. However, some of the
sources of noise in the real sensors are not modeled currently in OMNIGIBSON, contributing to a sim-
real gap, e.g., the poor dynamic range of the RGB camera, or the “shadow” effects in depth maps due
to the projected light mechanism. This analysis indicates possible avenues to further close the sensor
gap between simulation and the real world, e.g., by including sensor noise models in OMNIGIBSON
or by leveraging sim-to-real techniques (e.g., domain randomization, system identification).

G.2 Additional Experiments

In addition to RL-Prim.Hist., we also evaluated RL-VMC and RL-Prim.Hist. in the real world and
observed a similar trend of performance in the real world as in simulation: RL-VMC < RL-Prim.
< RL-Prim.Hist.. RL-VMC still achieves zero success because of sparse reward and exploration
difficulty during training. RL-Prim. has worse performance than RL-Prim.Hist.: on average, the robot
with RL-Prim.Hist. successfully places 0.64 cups/bottles, whereas the one with RL-Prim. places 0.
Qualitatively, RL-Prim. tends to get stuck in a repetitive action loop because the agent is unaware
of its action history. This preliminary result offers us some confidence that OMNIGIBSON can be a
reliable test bed for future sim-to-real robotics research.

H Ethical Statement

BEHAVIOR-1K aims to drive embodied Al solutions that fulfill human need. A primary ethical
consideration of BEHAVIOR-1K is therefore the method used to determine such need. To understand
which activities would be useful for humans, we survey 1,461 respondents on Amazon Mechanical
Turk and collected 50 responses for each activity, aiming for a clear consensus signal. Though this is
a large group, the results are still biased by the fact that the researchers, annotators, and data providers
only represent a small population relative to potential users of such technology. We plan to address
these biases by making BEHAVIOR-1K DATASET open-source and invite a wider community to
contribute to its knowledge base.

Furthermore, compared to the U.S. population, the demographic representation in our survey skews
white, male, non-disability status, mid-five figure incomes, and 30-40 age range with more represen-
tation on the higher side than the lower side of that range—closer to the demographics of Mechanical
Turk workers. This also biases the survey population toward certain responses, creating potential
ethical limitations.

Specifically this bias may affect the survey’s representation of people who would be affected most
by autonomous agents [A13]. We therefore asked several explicit questions such as “Do you do
household work for a living?”, “If you do household work for a living, would you benefit from

32

assistance?”, “Do you pay for someone else to do household work for you?”. Future work involves
using these questions to direct benchmark development.

Appendix References

[A1] Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization
dataset. arXiv preprint arXiv:1810.09305, 2018.

[A2] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[A3] Douglas C. Montgomery. Design and analysis of experiments. John Wiley & Sons, Inc.,
Hoboken, NJ, eighth edition, 2013.

[A4] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments on
amazon mechanical turk. Judgment and Decision making, 5(5):411-419, 2010.

[AS5] Pew Research Center. Research in the crowdsourcing age, a case study. Technical report,
Washington, D.C., July 2016.

[A6] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Conference on Computational Linguistics,
pages 1638-1649, 2018.

[A7] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61-124, dec 2003.

[A8] Julia Wichlacz, Alvaro Torralba, and Jorg Hoffmann. Construction-planning models in
minecraft. In Proceedings of the 2nd ICAPS Workshop on Hierarchical Planning (HPlan
2019), pages 1-5, 2019.

[A9] Alex Oliver and Timothy Smiley. Multigrade predicates. Mind, 113(452):609-681.

[A10] TurboSquid, Inc. Turbosquid. https://www.turbosquid.com/, 2022. Accessed: 2022-06-
24.

[A11] Niantic, Inc. Scaniverse. https://scaniverse.com, 2022. Accessed: 2022-06-24.

[A12] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In /CRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

[A13] David Baboolall, Duwain Pinder, and Shelley Stewart. How automation could affect em-
ployment for women in the united kingdom and minorities in the united states. McKinsey
Digital.

33

https://www.turbosquid.com/
https://scaniverse.com

Listing 1: MakeScones

(define

(problem making_scones_1)
(:domain omnigibson)

(:objects
flour .n.01_1 - flour.n.01
sack.n.01_1 - sack.n.nO0l
sugar.n.01_1 - sugar.n.01
jar.n.01_1 - jar.n.01
egg.n.02_1 egg.n.02_2 - egg.n.02
milk.n.01_1 - milk.n.01
bottle.n.01_1 - bottle.n.01
butter.n.01_1 - butter.n.01
bowl.n.01_1 - bowl.n.01
baking__powder.n.01_1 - baking_ powder.n.01
box.n.01_1 box.n.01_2 - box.n.01
scone.n.01_1 scone.n.01_2 scone.n.01_3
scone.n.01_4 scone.n.01_5 scone.n.01_6
- scone.n.01
mixer.n.04_1 - mixer.n.04
mixing_bowl.n.01_1 - mixing_bowl.n.01
baking_tray.n.01_1 - baking_tray.n.01
electric_refrigerator.n.01_1
- electric_refrigerator.n.01
cabinet.n.01_1 cabinet.n.01_2 - cabinet.n.0O1l
countertop.n.01_1 - countertop.n.01
floor .n.01_1 - floor.n.01
agent.n.01_1 - agent.n.01

:init
(filled flour.n.01_1 sack.n.01_1)
(ontop sack.n.01_1 countertopAnAOI_l)
(filled sugar.n.01_1 jar.n.01_1)
(inside jar.n.01_1 cabinet.n.01_1)
(inside egg.n.02_1 box.n.01_1)
(inside egg.n.02_2 box.n.01_1)
(inside box.n.01_1
electric_refrigerator .n.01_1)
(filled milk.n.01_1 bottle.n.01_1)
(inside bottle.n.01_1
electric _refrigerator.n.01_1)
(filled butter.n.01_1 bowl.n.01_1)
(inside bowl.n.01_1
electric _refrigerator.n.01_1)
(filled baking_powder.n.01_1 box.n.01_2)
(inside box.n.01_2 cabinet.n.01_1)
(ontop mixer.n.04_1 countertop.n.01_1)
(inside mixing_bowl.n.01_1 cabinet.n.01_2)
(inside baking_tray.n.01_1 cabinet.n.01_2)

(future scone.n.01_1)
(future scone.n.01_2)
(future scone.n.01_3)
(future scone.n.01_4)
(future scone.n.01_5)
(future scone.n.01_6)

(inroom oven.n.01_1 kitchen)
(inroom countertop.n.01_1 kitchen)
(inroom cabinet.n.01_1 kitchen)
(inroom cabinet.n.01_2 kitchen)
(inroom floor.n.01_1 kitchen)
(onfloor floor.n.01_1 agent.n.01_1)

(:goal
(and
(cooked scone.n.01_1)
(cooked scone.n.01_2)
(cooked scone.n.01_3)
(cooked scone.n.01_4)
(cooked scone.n.01_5)
(cooked scone.n.01_6)
)
)

34

Listing 2: CleanYourLaundryRoom

(define
(problem clean_your_laundry_room_1)
(:domain omnigibson)

(:objects
rag.n.01_1 - rag.n.01
dryer.n.01_1 - dryer.n.01

water.n.06_1 - water.n.06
vinegar.n.01_1 - vinegar.n.01
washer.n.03_1 - washer.n.03

dust.n.01_1 - dust.n.01
mold.n.05_1 - mold.n.05
floor .n.01_1 - floor.n.01
agent.n.01_1 - agent.n.01

)
(:init
(ontop rag.n.01_1 dryer.n.01_1)
(not
(covered water.n.06_1 rag.n.01_1)
)
(empty vinegar.n.01_1 washer.n.03_1)
(covered dust.n.01_1 dryer.n.01_1)
(covered mold.n.05_1 washer.n.03_1)
(onfloor agent.n.01_1 floor.n.01_1)
(filled water.n.06_1 bottle.n.01_1)
(onfloor bottle.n.01_1 floor.n.01_1)
(inroom washer.n.03_1 laundry_room)
(inroom floor.n.01_1 laundry_room)
)
(:goal
(and
(filled ?vinegar.n.01_1 ?washer.n.03_1)
(not
(covered ?dust.n.01_1 ?dryer.n.Ol_l)
)
(not
(covered ?mold.n.05_1 ?washer.n.03_1)
)
)
)
)
Listing 3: FixingMailbox
(define

(problem fixing_mailbox_1)
(:domain omnigibson)

(:objects

mailbox.n.01_1 - mailbox.n.01
rust.n.01_1 - rust.n.01
hammer.n.02_1 - hammer.n.02

nail.n.02_1 nail.n.02_2 nail.n.02_3
nail.n.02_4 nail.n.02_5 nail.n.02_6
- nail.n.02

emery_paper.n.01_1 - emery_paper.n.01

lawn.n.01_1 - lawn.n.01

floor .n.01_1 - floor.n.01

agent.n.01_1 - agent.n.01

)
(:init
(broken mailbox.n.01_1)
(covered rust.n.01_1 mailbox.n.01_1)
(ontop hammer.n.02_1 lawn.n.01_1)
(ontop nail.n.02_1 lawn.n.01_1)
(ontop nail.n.02_2 lawn.n.01_1)
(ontop nail.n.02_3 lawn.n.01_1)
(ontop nail.n.02_4 lawn.n.01_1)
(ontop nail.n.02_5 lawn.n.01_1)
(ontop nail.n.02_6 lawn.n.01_1)
(ontop mailbox.n.01_1 lawn.n.01_1)
(ontop emery_paper.n.01_1 lawn.n.01_1)
(inroom lawn.n.01_1 garden)
(inroom floor.n.01_1 garden)
(onfloor agent.n.01_1 floor.n.01_1)
)
(: goal
(and
(not
(covered ?rust.n.0l1_1 ?mailbox.n.01_1
)
(not
(broken ?mailbox.n.01_1)
)
)
)

Listing 4: PackingLunch

(define
(problem packing_lunches_1)
(:domain igibson)

(:objects
shelf.n.01_1 - shelf.n.01
water.n.06_1 - water.n.06
countertop.n.01_1 - countertop.n.01

apple.n.01_1 - apple.n.01
electric__refrigerator.n.01_1 -
electric_refrigerator.n.01
hamburger.n.01_1 - hamburger.n.01
basket .n.01_1 - basket.n.O1l

(:init
(oncop water.n.06_1 countertopAnAOI_l)
(inside apple.n.01_1
electric_refrigerator.n.01_1)
(inside hamburger.n.01_1
electric _refrigerator.n.01_1)
(ontop basket.n.01_1 countertop.n.01_1)
(inroom countertop.n.01_1 kitchen)
(inroom electric_refrigerator.n.01_1

kitchen)
(inroom shelf.n.01_1 kitchen)
)
(: goal
(and
(for_n_pairs
(1)
(7hamburger.n.01 - hamburger.n.01)
(?basket.n.01 - basket.n.01)
(inside 7hamburger.n.01 ?basket.n.01)
)
(for_n_pairs
(1)
(?basket.n.01 - basket.n.01)
(?water.n.06 - water.n.06)
(inside ?water.n.06 ?basket.n.01)
)
(for_n_pairs
(1)
(?basket.n.01 - basket.n.01)
(?apple.n.01 - apple.n.01)
(inside 7apple.n.01 ?basket.n.01)
)
(forall
(?basket.n.01 - basket.n.01)
(ontop ?basket.n.01 ?counter(:op.n.ol_l)
)
)
)

35

Listing 5: ServingHorsDoeuvres

(define
(problem serving_hors_d_oeuvres_1)
(:domain igibson)

(:objects
tray.n.01_1 tray.n.01_2 - tray.n.01
countertop.n.01_1 - countertop.n.01
oven.n.01_1 - oven.n.01
sausage.n.01_1 sausage.n.01_2 - sausage.n.01l

cherry .n.03_1 cherry.n.03_2 - cherry.n.03
electric_refrigerator.n.01_1 -
electric _refrigerator.n.01

)
(:init
(ontop tray.n.01_1 countertop.n.01_1)
(ontop tray.n.01_2 countertop.n.01_1)
(inside sausage.n.0l1_1 oven.n.01_1)
(inside sausage.n.01_2 oven.n.01_1)
(inside cherry.n.03_1
electric_refrigerator.n.01_1)
(inside cherry.n.03_2
electric_refrigerator.n.01_1)
(inroom oven.n.01_1 kitchen)
(inroom electric_refrigerator.n.01_1
kitchen)
(inroom countertop.n.01_1 kitchen)
)
(:goal
(and
(exists
(?tray.n.01 - tray.n.01)
(and
(forall
(?sausage.n.01 - sausage.n.01l)
(ontop ?sausage.n.0l ?tray.n.01)
)
(forall
(?cherry .n.03 - cherry.n.03)
(not
(ontop ?cherry.n.03 ?tray.n.01)
)
)
)
)
(exists
(?tray.n.01 - tray.n.01)
(and
(forall
(?cherry .n.03 - cherry.n.03)
(ontop ?cherry.n.03 ?tray.n.01)
)
(forall
(?sausage.n.01 - sausage.n.01l)
(not
(ontop 7sausage.n.0l 7tray.n.01)
)
)
)
)
)
)

llews ayns”|ajoy

a1q~ad140

JyBl~sa|o1gN2 39140

Jaddn™)y"s|gnop~asnoy

100}~ ajbuis"asnoy

uapseb 0 woisy

uapieb sy

n
i ‘*mu*

abue| ayns"|oj0y

eds”wAB jaj0y

FTETICE TR [y LR TTTT

0

i

abie| a0

Figure A.3: Part 1 of a scene collage showing views of all 50 scenes.

36

grocery_store_asian

grocery_store_cafe

grocery_store_conv.

half_st.

grocery_store

restaurant_asian

restaurant_brunch

restaurant_cafeteria

restaurant_diner

restaurant_hotel

restaurant_urban

school

ry

school_chemist

p_and

school_com

school_geography

school_gym

ge

hall_conference_lar

Figure A.4: Part 2 of a scene collage showing views of all 50 scenes.

37

!

X

R

\

\
\
R

JuITQ wosdp

&
1

v

JuI— 0 poomysaag

Jui—Q edouajoAsuag

jui_z 9ouajorauag

i "usyy)

Figure A.5: Part 3 of a scene collage showing views of all 50 scenes.

38

hall_train_station

hall_glass_ceiling

Figure A.7: A collage of objects included in the BEHAVIOR-1K DATASET. These objects highlight key
features of OMNIGIBSON such as transparency, articulation, heat simulation, and lighting.

3rd Person View RGB Depth Normals Inst. Segm.

Figure A.8: Visual modalities provided by OMNIGIBSON. The robot observes the scene (left, 3rd person
view) and obtains visual observations from its onboard sensors including RGB images, depth, normals, and
instance segmentation. Rendered RGB images are highly realistic, and, combined with the diverse set of visual
observations, can be used to train visual policies.

Figure A.9: Activities used in our evaluation. From left to right: (a). StoreDecoration, (b). CollectTrash
and (c). CleanTable. The rectangles indicate relevant locations for the activities, e.g., locations with objects to
grasp (red rectangles) or to use/place them (green rectangles). Even though these activities are some of the most
simple in BEHAVIOR-1K, they are still very long-horizon, requiring hundreds of low-level commands or the
correct concatenation of multiple action primitives.

39

Figure A.10: Overview of all the high-level action primitives with the pre-conditions (left), post-conditions
(right), and intermediate states (middle) during execution.

40

Image Obs State Obs

__________ ' PR T Image Obs State Obs
Feature Extractor 1 Feature Extractor l l
1
Conv(3,4,8,4)-RelU | |} Feature Extractor H Feature Extractor

MaxPool (2) Conv (3, 4, 8, 4) - ReLU

MaxPool (2)

| Linear (4,128)-RelU |

Conv (4, 8, 4,2) - RelU

Linear (4, 128) - ReLU
Conv (8, 4,3,1)-RelU

Flatten

1

|
i
|
| | conv(4,8,4,2)-RelU
]
1
[}
|
I
|

|
|
|
MaxPool (2) |
|
|

| |
| |
| |
| MaxPool (2) |
| |
| |

1 L]
Actor ! | Critic & Target Critic - / \
1 I e 4= e e e e T ——————

:l Linear (256 +num_action, 256 - ReLU |: Policy Net Value Net

Linear (128, 64) - Tanh | Linear (128, 64) -Tanh |

| 1
[Linear (256, 256) - ReLU || 1| Linear (256, 256) - ReLU |:
1

num_action, num, I

=R

1 [N
1 [N
1 (N
| | 3t
1 ! i
Unear (256,1) ! ! | Linear (128, 64) - Tanh |:i| Linear (128, 64) -Tanh |
1 1
1 [}
1 B

| Linear (64, 1) |

a) SAC Architecture b) PPO Architecture

Figure A.11: Policy architecture of SAC (RL-VMC) and PPO (RL-Prim. and RL-Prim.Hist.). The policy maps
egocentric visual observations and proprioceptive information into an action that controls the robot base, arm,
and gripper. PPO outputs a discrete high-level action primitive while SAC outputs a continuous low-level joint
control directly.

41

Figure A.12: Comparison between real and simulated sensor signals. RGB, Depth and LiDAR signals from
the real-world sensors (first and third rows) and from the simulated sensors (second and fourth rows) at two
different locations of the mockup__apt scene (location 1: first two rows, location 2: last two rows). We
observed a smaller sensor sim-real gap for LIDAR than for RGB and Depth: RGB is heavily influenced by
lighting conditions and camera settings while Depth has difficulty in capturing reflective surfaces.

42

	Survey
	Activity Sources
	Survey Design
	Demographic Information

	Activity Annotation
	Quality assessment of BEHAVIOR-1K annotations

	New BDDL features
	Scene and Object Models
	Simulation
	Extended Object States and Logical Predicates in OmniGibson
	Extended object states associated with object category properties
	Object model properties
	Object states
	Logical predicates as checking functions
	Logical predicates as sampling functions

	AMT Visual Realism Study
	Visual Modalities
	Performance Benchmark

	Baselines Details
	Network Architecture
	Task settings
	Training details
	Action Primitives
	Additional Metrics: success score Q

	Details of the Real-World Setup
	Further Characterization of the Sim-Real Gap
	Additional Experiments

	Ethical Statement

