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In this supplementary material, we describe more details of our method, including implementa-
tion details in Sec. A, mesh reconstruction in Sec. B, cases with shape ambiguity in Sec. C, more
qualitative results in Sec. D and Sec. E. Besides, we also provide real world experiments in Sec. F.

A Implementation Details

A.1 Training Details

The object point cloud is back-projected from the depth image with the Mask-RCNN segmenta-
tion results provided by [1]. We randomly sample 1024 points from the object point cloud as our
input. The network architecture and training protocol of our generative model g keep the same
as [2]. We train a single generative model for each category with the CAD models provided by
ShapeNetCore [3]. Our part segmentation network architecture follows the part segmentation ver-
sion of 3D-GCN [4], and we set 256 primitives in our main experiments. The segmentation network
is trained on CAMERA dataset (about 600K instances) with a batch size of 32 on a single NVIDIA
Tesla V100 graphics card. Moreover, we set the initial learning rate as 0.0005 and multiply it by
a factor 0.2 every 10 epochs. We use the ground truth pose provided by [5] and apply the pose on
generated primitives to annotate the ground truth of part segmentation.

A.2 Training Data Augmentation

To obtain the object point cloud which is the input of our method from given images, we utilize
Mask R-CNN [6] to segment the object masks from images. Because the results provided by
Mask R-CNN are often imperfect, the object point cloud back-projected from the masked depth
image would contain background points. To filter out these outlier points, we train our part seg-
mentation network (Sec. 3.2) by making augmentation on the ground truth segmentation masks. As
shown in Fig. A, we adopt the following two strategies [7] on the ground truth mask : (a) random 0
to 5 dilations on the 2D mask. (b) random 0 to 15-pixel crop on the mask’s bounding box.
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Figure A: Augmentation on synthetic training data. (a) Dilation on 2D mask. (b) Random crop on
mask’s bounding box. The black points in the object point cloud are noise points.
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Table 1: Comparison of shape reconstruction accuracy of our reconstructed primitives and mesh in
CD metric (×10−3) on REAL275.

Shape bottle bowl camera can laptop mug all

Semantic Primitives 2.05 1.55 10.1 1.63 2.12 2.93 3.45
Mesh 3.51 3.27 8.55 3.55 2.68 2.89 4.08

A.3 Training a DualSDF Model

In order to generate the semantic primitive representation for each shape, we pre-trained a generative
model for each category following the network structure of DualSDF [2]. The generative model rep-
resents an object shape in two granularities. One coarse-level branch represents the coarse structure
by a certain number of simple shape primitives, and the other fine-level branch represents the fine
structure of the object by SDF.

As we mentioned in Sec. 3.1, given a shape embedding z, the coarse-level branch could be expressed
as gc(z) = {αi|i = 1, ..., Nc}, and the fine-level branch could be expressed as gf (z,x) = SDF (x).
A signed distance field (SDF) refers to the closest distance from a point x to the surface of the object
model. SDF (x) < 0 indicates x is inside the model and SDF (x) > 0 indicates outside. The two
auto-decoders gf and gc are supervised by a set of pairs of 3D points x and their corresponding
ground truth signed distance values s = SDF (x). The primitive set α = {αi|i = 1, ..., Nc} can be
learned by minimizing the difference between predicted and ground truth signed distance values:

α̂ = argmin
α

LSDF (d(x,α), s), (1)

where LSDF is a truncated L1 loss and d indicates the distance from x to the nearest surface of α.
We use sphere as primitive here, thusαi = (ci, ri), where ci is the sphere center and ri is the sphere
radius. d is expressed as:

d(x,α) = min
1≤i≤Nc

||p− ci||2 − ri, (2)

In our implementation, we add a truncated value to the ground truth s to make these primitives
evenly distributed on the object’s surface. Specifically, the Eq. 1 can be rewritten as:

α̂ = argmin
α

LSDF (d(x,α), s), (3)

where

s =

{
s, s ≥ − t

2

−s− t, s < − t
2

. (4)

and t = 0.02 is a truncated value in our experiments.

The generated primitive examples of six categories are shown in Fig. B, and we can see that fewer
primitives lack geometric details but will make it easier for our part segmentation network (Sec. 3.2)
to learn. Fig. B also shows that 512 primitives are redundant to represent a shape, which drops all
metrics on pose estimation. Sec. 4.3 shows the ablation study on the different number of primitives.

B By-Product: Object Mesh Reconstruction

Although the fine-level decoder gf provides a fine-level structural representation of the objects, we
do not exploit it in our main experiment (shape and pose estimation). To explore the potential of
the shared latent space shared by gc and gf , we use our optimized shape embedding ẑ to generate a
mesh model for each object through the fine-level decoder gf .

Specifically, for each object, we grid the canonical frame to 483 points and get the SDF value of
each point by the optimized shape embedding ẑ and the trained fine-level generative model gf .
After that, we utilize the Marching Cubes algorithm [8] to recover the object mesh. Table 1 shows
a comparison of shape reconstruction of the primitives and mesh. With the mesh of each object, we
can reconstruct the object-level scene by transforming these meshes to the world coordinate using
our estimated pose. Fig. C shows qualitative results of our object mesh reconstruction. Without
further optimization, the different reconstructed meshes keep consistent with their observations. For
example, the reconstructed camera lens in the first scene (first column) is longer, while the one in
the second scene (second column) is shorter.
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Figure B: Visualization of the generated primitive representations of six categories (bottle, bowl,
camera, can, laptop and mug) with different numbers (64, 128, 256 and 512) of primitives. We
can see that 64 primitives (top row) lack of geometric details and 512 primitives (bottom row) are
redundant to represent a shape.
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Figure C: Visualization of our mesh reconstruction experiment. The mesh of each object is recovered
by the optimized shape embedding ẑ and the fine-level decoder gf . We transform the object model
to the world coordinate by our estimated pose. The top row is the original scene and the bottom row
is our object-level scene reconstruction.
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Figure D: Shape ambiguity cases. When an object is occluded causing shape ambiguity, although
our estimated shape and GT shape are both consistent with the observation, this still causes relatively
large translation errors (top row) and rotation errors (bottom row) in the evaluation.

C Shape Ambiguity of Partially Observed Point Cloud

Fig. D shows two cases of shape ambiguity when the objects are highly occluded, and these cases
lead to some failure cases of our method on CAMERA [9] dataset. The top row shows a bottle with
the top half occluded. Although our estimated shape is consistent with the partially observed point
cloud, it still leads to translation errors when evaluating (about 10cm translation error in this case).
The bottom row shows a laptop with its keyboard occluded. In this case, the screen of our estimated
laptop is consistent with the observation, but there is still a rotation error when evaluating (about
20◦ rotation error in this case).

D More Results on NOCS-REAL275

Fig. E shows more qualitative results of our method compared with SGPA [10]. Compared with our
method, the results of SGPA are relatively poor in some cases of laptops and cameras.

E More Visualization of Shape Optimization

Fig. F gives more visualization of the process of our shape optimization. As the optimization pro-
ceeds, the structure of the object is optimized to be consistent with the observation. For example, the
lens of the camera is gradually stretched, the angle between the screen and keyboard of the laptop
gradually increases, and the handle of the mug becomes rectangular. Throughout our framework,
shape optimization accounts for the bulk of the time, taking about 0.005s per iteration.

F Real World Experiments

Applicability to unseen scenarios and settings is critical for robotic tasks. To verify the effectiveness
of our model in real scenarios other than the dataset provided by NOCS [9], we test our method on
several different real-world scenarios. These scenarios contain different kinds of household objects
of different shapes, and the photos of these scenarios are taken from the view of a robotic arm. We
use Detic [11] to pre-process the masks of each object and treat the cups with handles as mugs and
those without handles as cans. Fig. G shows visualization results, and tight orientated bounding
boxes mark out objects. The red, green and blue axes represent the x, y, z axes of the canonical
coordinate.

Besides, we conduct robotic grasping experiments to demonstrate the application of our category-
level pose estimation. Specifically, we first estimate pose of each object from the view of a robotic
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Figure E: More qualitative comparisons between our method and SGPA [10] on REAL275 dataset.
The red dotted boxes indicate the results of SGPA with worse accuracy than ours.

arm. And then, we use the MoveIt![12] to plan a feasible path for the robot arm to grasp the top part
of objects. Refer to our video for details.
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Figure F: More visualization of our shape optimization process. The objects in the figure are opti-
mized by 20 iterations (from left to right). As the optimization proceeds, the shape of the objects
changes significantly. For example, the lens of the camera is gradually stretched, the angle between
the screen and keyboard of the laptop gradually increases, and the handle of the mug becomes rect-
angular.
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Figure G: Results of real scenes. These scenarios contain different kinds of household objects of
different shapes. The objects are marked out by tight orientated bounding boxes. The red, green and
blue axes represent the x, y, and z axes of the canonical coordinate, respectively.
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