
Appendix1

Contents2

1 Implementation Details 23

1.1 Entity Encoding . 24

1.2 Details on Training Set Feasibility Predictor . 25

1.3 Details on the Attention Structure for Planning with Set Representation 26

1.4 Network Architectures . 37

1.5 Training Details . 48

2 Details on Simulation Experiments 59

2.1 Hyperparameters for Simulation Dough . 510

2.2 Hyperparameters for DBSCAN . 511

2.3 Hyperparameters for PASTA . 512

2.4 Receding Horizon Planning for CRS-Twice . 613

3 Details on Real World Experiments 614

3.1 Heuristic Policies . 615

3.2 Procedure for Resetting the Dough . 716

3.3 Procedure for the Human Baseline . 717

3.4 Procedure for Making the Real Dough . 718

4 Additional Experiments 719

4.1 Ablation Studies . 720

4.2 Visualization of the Latent Space . 821

4.3 Runtime of PASTA . 922

4.4 Additional metrics for real world experiments . 923

4.5 Robustness of PASTA . 924

5 Further Discussion on Limitations and Future Work 1025

1

1 Implementation Details26

1.1 Entity Encoding27

To train our point cloud variational autoencoder [1], we normalize the point cloud of each entity28

Pi to be centered at the origin, i.e. P̄i = Pi − ti, where ti is the mean of all points in Pi. We then29

encode each centered P̄i into a latent encoding: zi = ϕ(P̄i). Our latent representation ui = [zi, ti]30

consists of the encoding of the point cloud’s shape zi and the position of the center of the point31

cloud ti. We model the point cloud’s position ti explicitly such that the learned latent embedding32

zi can focus on shape variation alone and the model that plans over ui can still reason over point33

clouds at different spatial locations. During training, we record the 3D bounding box of all training34

data tmin, tmax ∈ R3, and we sample from [tmin, tmax] during planning. We denote this combined35

distribution of u = [z, t] as Pu.36

1.2 Details on Training Set Feasibility Predictor37

Hard Negative Samples Suppose skill k takes Nk latent vectors from observation Ûo and Mk latent38

vectors from goal Ûg as input. To generate random pairs of observations and goals as negative39

samples for the feasibility predictor, we can sample each latent point cloud representation ui by40

sampling the shape zi from the VAE prior pz and sampling the position ti from the distribution of41

positions in the training dataset. Such random negative samples are used similarly in DiffSkill [2].42

However, as the combined dimension of the set representation becomes larger compared to a flat43

representation, we need a way to generate harder negative samples. To do so, for a positive pair of44

set representation ({uoi }, {u
g
j}), we randomly replace one of the entities uoi or ugj with a random45

sample in the latent space and use it as a negative sample. Our ablation results show that this way of46

generating hard negative samples is crucial for training our set feasibility predictor.47

Noise on Latent Vectors During training of the feasibility predictor, for each of the input latent48

vector u = [z, t], where z ∈ RDz is the latent encoding of the shape and t ∈ R3 is the 3D position49

of the point cloud, we add a Gaussian noise to each part, i.e. ẑ = z + σzϵ and t̂ = t+ σtϵ, where50

ϵ ∼ N (0, I). The amount of noise determines the smoothness of the feasibility landscape. Without51

any noise, planning with gradient descent with the feasibility function becomes much harder.52

1.3 Details on the Attention Structure for Planning with Set Representation53

Given the initial latent set observation Uobs with No components, and the skill sequences k1, . . . , kH ,54

in this section we describe how to generate the attention structure. We denote the latent set represen-55

tation at step h as Uh, h = 1 . . . H and define U0 = Uobs. As skill kh takes in Nkh components as56

input and Mkh components as output, by calculation we know that Uh has No +
∑h
i=1 Mki −Nki57

components. From now on, we denote |Uh| = Nh and Uh = {uh,1, . . . , uh,Nh
}. As the skill kh58

only applies to a subset of the input Uh−1, we now formally define the attention structure at step h59

to be Ih, which consists of a list of indices, each of length Nkh , such that Ih selects a subset from60

Uh−1 to be the input to the feasibility predictor, i.e.61

Ûh−1 = Uh−1
Ih

⊆ Uh−1.

However, enumerating all Ih is infeasible, as there are C
Nkh

Nh
combinations for each step. Fortunately,62

we do not have to enumerate all different structures. The insight here is that, for each attention63

structure I1, . . . IH , we will perform a low-level optimization. In this low-level optimization, we will64

first initialize all the latent vectors to be optimized from Pu and then perform gradient descent on65

them. As many of the attention structures yield topologically equivalent tree structures (An example66

of such a tree is illustrated in Figure 2c of the main paper), and each latent vector in the tree is67

sampled independently from the same distribution Pu, these topologically equivalent tree structures68

result in the same optimization process. As such, we do not need to exhaust all of such attention69

structures.70

2

Instead of enumerating each topologically different structure and then sampling multiple initializations71

for the low-level optimization, we randomly sample sequences (I1, . . . IH) and perform low-level72

gradient-descent optimization on all the samples. In this way, with enough samples, we will be able73

to cover all attention structures.74

Now, we can sequentially build up the subgoals latent set representation during planning. Specifically,75

assuming that we have constructed the previous latent set representation Uh−1, we will now describe76

the procedure for constructing Uh, as well as the predicted feasibility for the current skill kh,77

i.e. fkh(Û
o,h, Ûg,h), where Ûo,h, Ûg,h are the subset of Uh−1 and Uh attended by the feasibility78

predictor. First, we generate Ih by randomly choosing the index of a subset from Uh−1. Uh are79

composed of two parts: The first part is the latent vectors generated by applying the skill kh. For80

this part, we will create a set of new vectors uh,0, . . . uh,Mhk
. This part of the latent vectors will be81

attended by the feasibility predictor as Ûg,h = {uh,0, . . . uh,Mhk
}. The second part of Uh comes82

from the previous latent set vectors that are not modified by the skill, i.e. Uh−1 \ Uh−1
Ih

, and Uh is83

the addition of both parts, i.e.84

Uh = Ûg,h ∪ (Uh−1 \ Uh−1
Ih

)

In this way, we can sequentially build up Uh from Uh−1, and U0 is simply Uobs. At the same time,85

we have determined our attention structure and the feasibility prediction. Our objective can thus be86

written as87

argmin
k,I,U

J(k, I,U) =

H∏
h=1

fkh(Û
o,h, Ûg,h) exp(−C(UH , Ug)), (1)

where U is the set union of all latent vectors to be optimized.88

1.4 Network Architectures89

Set Feasibility Predictor We use a Multi-Layer Perceptron (MLP) with ReLU activations for our90

feasibility predictor. We apply max-pooling to the transformed latent vectors of Ûo and Ûg to achieve91

permutation invariance. Below is our architecture:

Figure 1: Architecture for the set feasibility predictor

92

Set Cost Predictor We use a 3-layer MLP with a hidden dimension of 1024 and ReLU activations.93

Set Policy The set point cloud policy for the kth skill πk takes in an observed point cloud P obs, a94

goal point cloud P goal, and a tool point cloud P toolk and outputs an action at each timestep to control95

the tool directly. The tool point cloud P tool is obtained by sampling points on the mesh surface of the96

tool and then transforming these points to the same camera frame as the P obs and P goal, assuming97

the pose of the tool is known from the robot state. Instead of taking latent vectors as input, the policy98

functions directly in point cloud space, which allows it to handle times when spatial abstraction is99

ambiguous. For instance, during cutting and merging, the number of dough components gradually100

increases or decrease, during which the latent set representation is not changing smoothly while101

the point clouds change smoothly during the process. We later show the advantage of using point102

clouds directly as the policy input. We concatenate each point’s (x, y, z) coordinates with a one-hot103

encoding to indicate whether the point belongs to the observation, tool, or goal, and we input the104

points into a PointNet++ [3] encoder followed by an MLP which outputs the action. We use a point105

3

LiftSpread GatherMove CutRearrange CRS + CRS-Twice

of initial configurations 200 200 1500 1200
of target configurations 200 200 1500 1200
of training trajectories 1800 1800 1350 1080
of testing trajectories 200 200 150 120
of total trajectories 2000 2000 1500 1200
of total transitions 1e5 1e5 7.5e4 6e4

Table 1: Summary of training/testing data

cloud for the tool to allow the PointNet encoder to reason about the interaction between the tool and106

the dough in the same space. We use PyTorch Geometric’s [4] implementation of PointNet++ and107

with the following list of modules in our encoder.108

SAModule(0.5,0.05,MLP([3+3,64,64,128]))109

SAModule(0.25,0.1,MLP([128+3,128,128,256]))110

GlobalSAModule(MLP([256+3,256,128,512,1024]))111

The MLP following the encoder consists of hidden dimensions [1024, 512, 256] and ReLU activations.112

1.5 Training Details113

Training data. We inherit the data generation procedure from DiffSkill [2]: first, we randomly114

generate initial and target configurations. The variations in these configurations include the location,115

shape, and size of the dough and the location of the tool. We then sample a specific initial configuration116

and a target configuration and perform gradient-based trajectory optimization to obtain demonstration117

data. For each task, the demonstration data consists of all the transitions from executing the actions118

outputted by the trajectory optimizer. We perform a train/test split on the dataset and select 5119

configurations in the test split for evaluating the performance for all the methods. More information120

about training and testing data can be found in Table 1.121

Point cloud VAE. We train our point cloud VAE by maximizing the evidence lower bound (ELBO).122

For a dataset of observations P (X), which consists of the segmented point cloud of each entity in the123

scene, we optimize the following objective:124

LV AE = EQϕ(z|x) [logPψ(X|z)]−DKL(Qϕ(z|X)||p(z)) (2)

where Qϕ(z|X) is the encoder modeled as a diagonal Gaussian, Pψ(X|z) is the decoder, and p(z) is125

standard Gaussian. The VAE is pretrained, and we fix its weights prior to training the other modules.126

Point cloud policy. We train our point cloud policy with standard behavioral cloning (BC) loss, i.e.127

for the k-th skill, we sample a transition from the demonstration data, which contains the observed128

point clouds {P oi }, goal point clouds {P gj }, a tool point cloud P toolk , and the action of the tool a.129

Then, we match point clouds in the observation set to those in the goal set by finding the pairs of130

point clouds that are within a Chamfer Distance of ϵ: {(P oi , P
g
j) | DChamfer(P

o
i , P

g
j) < ϵ} and131

filter out the non-relevant point clouds. Last, we pass the filtered point clouds into the policy and132

minimize the following loss:133

Lπk
= E

[
∥a− πk({P oi }, P toolk , {P gj })∥

2
]

(3)

Feasibility predictor. We train the feasibility predictor for the k-th skill by regressing to the134

ground-truth feasibility label using mean squared error (MSE) as loss, i.e.135

Lfk = E
[(

fk(Û
o, Ûg)− 1{Ûo, Ûg is a positive pair}

)2
]

(4)

During training, we obtain positive pairs for the feasibility predictor by sampling two point clouds136

(P obs, P goal) from the same trajectory in the demonstration set. To find Ûo, Ûg , we first cluster the137

4

Parameter LiftSpread GatherMove CutRearrange CRS + CRS-Twice

Yield stress 200 200 150 150
Ground friction 1.5 1.5 0.5 0.5

Young’s modulus (E) 5e3 5e3 5e3 5e3
Poisson’s ratio (ν) 0.15 0.15 0.15 0.15

Table 2: Parameters for simulation dough

observation and goal point clouds into two sets {P oi }, {P
g
j } respectively. Then, we match point138

clouds in the observation set to those in the goal set by finding the pairs of point clouds that are within139

a Chamfer Distance of ϵ: {(P oi , P
g
j) | DChamfer(P

o
i , P

g
j) < ϵ}. We then remove these point clouds140

from the corresponding set, since these are the point clouds that have already been moved to the target141

location in the goal. We can then encode the remaining point clouds into Ûo, Ûg using our VAE.142

Cost predictor. We train the cost predictor by simply regressing to the Chamfer Distance (CD)143

between two entities represented by their latent vectors, i.e.144

Lc = E
[
(c(ϕ(Pi), ϕ(Pj))−DChamfer(Pi, Pj))

2
]

(5)

where Pi and Pj are point clouds of a single entity sampled from the dataset and ϕ is the encoder.145

There are two reasons that we train a cost predictor on latent vectors instead of directly computing146

the Chamfer Distance between two point clouds. For one, decoding each latent vector would greatly147

bottleneck the planning speed. Experiments on CutRearrange show that with our learned cost148

predictor, the planning takes 35s; on the other hand, if we decode the latent vectors and use the149

Chamfer Distance, even with a subsampled point cloud of 200 points, the planning takes 37200s150

(around 10 hours), which is impractical to use. Moreover, using a cost predictor can also offer us the151

flexibility to incorporate more complex reward functions in the future.152

Finally, We train our policy, feasibility predictor, and cost predictor with the following loss:153

LPASTA =

K∑
k=1

E [λπLπk
+ λfLfk + λcLc] (6)

We use λπ = 1, λf = 10, and λc = 1 for all of our experiments.154

2 Details on Simulation Experiments155

2.1 Hyperparameters for Simulation Dough156

We use PlasticineLab [5] for evaluating our simulation experiments. We provide the hyperparameters157

that are relevant to the properties of the dough in simulation to enhance the replicability of our results.158

See Table 2 for details.159

2.2 Hyperparameters for DBSCAN160

To cluster a point cloud, we use Scikit-learn’s [6] implementation of DBSCAN [7] with161

eps=0.03, min_samples=6, min_points=10 for all of our environments. Further, we assign162

each noise point identified by DBSCAN to its closest cluster.163

2.3 Hyperparameters for PASTA164

Table 3 shows the hyperparameters used for PASTA in our simulation tasks. Planning for CRS-Twice165

requires a large amount of samples. Therefore, we modify the planner to improve sample efficiency.166

See Sec. 2.4 for details.167

5

Training parameters LiftSpread GatherMove CutRearrange CRS CRS-Twice

Point Cloud VAE
learning rate 2e-3 2e-3 2e-3 2e-3 2e-3
latent dimension 2 2 2 2 2

Feasibility predictor
learning rate 1e-4 1e-3 1e-4 1e-4 1e-4
batch size 256 256 256 256 256
noise on shape encoding σz 0 0 0 0.02 0.02
noise on position σt 0.01 0.01 0.005 0.01 0.01

Cost predictor
learning rate 1e-4 1e-3 1e-4 1e-4 1e-4
batch size 256 256 256 256 256

Policy
learning rate 1e-4 1e-3 1e-4 1e-4 1e-4
batch size 10 10 10 10 10
noise on point cloud 0.005 0.005 0.005 0.005 0.005

Planning parameters LiftSpread GatherMove CutRearrange CRS CRS-Twice

learning rate 0.01 0.01 0.01 0.01 0.01
number of iterations 200 100 100 200 300
number of samples 5000 5000 5000 50000 500000

Table 3: Summary of hyperparameters used in PASTA. For CRS-Twice, we use the same model as
CRS but modify the planner to have better sample efficiency.

2.4 Receding Horizon Planning for CRS-Twice168

As the planning horizon increases, the number of possible skill sequences as well as the number of169

possible attention structures increases exponentially. The task of CRS-Twice has a planning horizon170

of 6 and is a much more difficult task to solve. As such, for this task, we specify the skill sequences171

and use Receding Horizon Planning (RHP). Starting from the first time step, we follow the procedure172

in Algorithm 1 but only optimize for HRHP steps into the future and compare the achieved subgoal173

with the final target to compute the planning loss. After optimization, we take the first subgoal from174

the plan and discard the rest of the plan. We then repeat this process until we reach the overall175

planning horizon H . In our experiments, we use HRHP = 3. While we can perform model predictive176

control and execute the first step before planning for the second step, we find this open-loop planning177

and execution to be sufficient for the task.178

3 Details on Real World Experiments179

3.1 Heuristic Policies180

Transferring the learned policies from simulation to the real world can be more difficult than transfer-181

ring the planner itself, as the policies are affected more by the sim2real gap, such as the difference182

in friction and properties of dough in the real world. To sidestep this challenge, for our real world183

experiments, we design three heuristic policies: cut, push, and roll to execute the generated plans in184

the real world.185

Just like our learned policies in simulation, each heuristic policy takes in the current observation and186

the generated subgoal in point clouds and outputs a sequence of desired end effector positions used187

for impedance control. In addition, each policy takes in the attention mask provided by the planner188

indicating the components of interest. The same DBSCAN procedure is used for this. The cut policy189

first calculates the cutting point by computing the length ratio of the resulting components. Then it190

cuts the dough and separates it such that the center of mass of each resulting component matches the191

one in the subgoal. For the push policy, given a component and a goal component, the policy pushes192

the dough in the direction that connects the two components’ center of mass. The roll policy first193

6

moves the roller down to make contact with the dough. Then, based on the goal component’s length,194

the policy calculates the distance it needs to move the roller back and forth when making contact195

with the dough.196

3.2 Procedure for Resetting the Dough197

To compare different methods with the same initial and target configurations, we first use a 3D-printed198

mold to fit the dough to the same initial shape. We then overlay the desired initial location on the199

image captured by the top-down camera and place the dough at the corresponding location in the200

workspace to ensure different methods start from the same initial location.201

3.3 Procedure for the Human Baseline202

Following the same procedure in section 3.2, we first reset the dough to the initial configuration.203

Then, we overlay the goal point cloud on the image captured by the top-down camera. The overlay204

image is shown on a screen and presented to the human in real-time when the human is completing205

the task.206

3.4 Procedure for Making the Real Dough207

Material Quantity(g) Baker’s percentage(%)

Flour 300 100
Water 180 60
Yeast 3 1

Table 4: All-purpose dough recipe

We follow the recipe shown in Table 4 to make the real dough. Following the tradition of baking, we208

use the backer’s percentage, so that each ingredient in a formula is expressed as a percentage of the209

flour weight, and the flour weight is always expressed as 100%. First, we take 300 grams of flour, 3210

grams of yeast, and 180 grams of water into a basin. Then, we mix the ingredients and knead the211

dough for a few minutes. Next, we use a food warp to seal the dough in the basin and put them in the212

refrigerator to let the dough rest for 4-5 hours. Finally, we take out the dough from the refrigerator213

and reheat it with a microwave for 30-60 seconds to soften it.214

4 Additional Experiments215

4.1 Ablation Studies216

Ablation Method Performance / Success

No Smoothing Feasibility 0.744 / 40%
Shared Encoder Policy -0.304 / 0%

Tool Concat Policy 0.516 / 60%
Set without Filtering 0.360 / 20%

PASTA (Ours) 0.837 / 80%

Table 5: Additional ablation results from CutRearrange.

Ablations on feasibility predictor. Following217

the discussions in Sec 1.2, we train a feasibil-218

ity predictor without adding any noise to show219

that adding noise helps with the optimization220

landscape during planning. We call this ablation221

No Smoothing Feasibility. As shown in Table 5,222

this variant only achieves half of the success rate223

of PASTA, suggesting the importance of noise224

during training.225

Ablations on policy. We consider two ablation226

methods for our set policy. First, we consider a Shared Encoder Policy that takes in the latent vectors227

from the encoder and uses a max pooling layer followed by an MLP to produce the action. The228

architecture is very similar to our Set Feasibility Predictor. Our results in Table 5 show that this229

architecture has zero success in our task. We hypothesize that this is because the entity encoding can230

7

1 1000 2000 3000 4000 5000
Number of Samples

10

15

20

25

30

35

Pl
an

ni
ng

 T
im

e
(s

)

(a) Planning time v.s. number of samples

1 1000 2000 3000 4000 5000
Number of Samples

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

No
rm

al
ize

d
Pe

rfo
rm

an
ce

(b) Planning performance v.s. number of samples

Figure 2: Planning time and performance with varying number of samples in CutRearrange.We show
the mean and standard deviation of performance over 5 runs.

be unstable during the skill execution. For example, during cutting, the dough slowly transitions from231

one piece to two pieces, making the input to the policy unstable.232

Second, we compare with a Tool Concat Policy that takes in the observation and goal point cloud of233

the dough, passes them through a PointNet++ [3] encoder to produce a feature, and then concatenates234

the tool state to the feature. The concatenated feature is passed through a final MLP to output the235

action. In comparison, the set policy in PASTA takes the point cloud of the tool and concatenates236

it with the dough in the point cloud space before passing it to the PointNet. We hypothesize that237

this way allows PointNet to reason more easily about the spatial relationships between the tool point238

cloud and the dough point cloud. Results in Table 5 highlight the advantage of using a point cloud to239

represent the tool.240

Ablation on set representation. We consider a variant of PASTA Set without Filtering, which uses241

the same set representation as PASTA, but does not filter entities that are approximately the same242

both during training and testing. This filtering is only possible with a set representation and we want243

to show the advantage of this filtering. For this ablation, during training, the feasibility predictor244

takes in all the entities in the scene in set representation, and the policy takes in the concatenation245

of point clouds from each entity. During planning, we do not enumerate attention structures but246

instead optimize for all the entities. As shown in Table 5, without filtering, this ablation performs247

significantly worse than PASTA, showing that filtering is an important advantage enabled by our set248

representation.249

4.2 Visualization of the Latent Space250

We visualize the latent space of PASTA in CutRearrange in Figure 3 and visualize the latent space251

of Flat 3D baseline in Figure 4 for comparison. Since we use a latent dimension of 2 for all of252

our environments, we can visualize the original latent space without applying any dimensionality253

reduction techniques. PASTA only encodes the shape of each entity and thus can better model the254

variations in shapes. On the other hand, Flat 3D couples the shape variation with the relative position255

of two entities. This makes a flat representation difficult to generalize compositionally to scenes with256

different numbers of entities or scenes with entities that have novel relative spatial locations to each257

other.258

8

4.3 Runtime of PASTA259

We implement the planning in the latent set representation in an efficient way, which can plan with260

multiple different structures in parallel on a GPU. To demonstrate the efficiency of PASTA, we vary the261

number of samples used for planning and record the planning time and final performance. We conduct262

the experiments in CutRearrange. Figure 2a shows that the planning time scales approximately263

linearly with the number of samples, and Figure 2b shows the planning performance versus the264

number of samples. As the result suggests, PASTA can achieve its optimal performance with a very265

short amount of planning time (under 1 minute) for the majority of our tasks. Finally, we summarize266

the planning time for all of our tasks in simulation in Table 6.

LiftSpread GatherMove CutRearrange CRS CRS-Twice*

Planning time (seconds) 58 35 35 307 7810

Table 6: Summary of planning time of PASTA in all of the simulation tasks. CRS-Twice uses
Receding Horizon Planning, which results in an increase in planning time.

267

4.4 Additional metrics for real world experiments268

We also quantitatively computed the action error v.s. subgoal error for our real world trajectories. The269

results are shown in Table 7. From the results in the table, our planned goal is closer to the ground270

truth goal than the achieved goal, measured by the Earth Mover’s Distance (EMD), which shows that271

the controller does not compensate for the error of the planner.272

CutRearrange CRS CRS-Twice

EMD(planned goal, ground-truth goal) 0.038 ± 0.004 0.027 ± 0.004 0.029 ± 0.002
EMD(reached goal, ground-truth goal) 0.056 ± 0.007 0.044 ± 0.006 0.054 ± 0.016

Table 7: Action error v.s. subgoal error for real world experiments. For each task, the mean ± std for
4 trajectories are shown.

4.5 Robustness of PASTA273

We show that PASTA is robust to two types of variations and can retain high performance.274

Robust to planning horizon First, we increase the planning horizon from the minimal length for275

the task (3) to twice the minimal length (6), and we observe that PASTA retains a high performance276

across all horizons. The results are shown in Table 8. This suggests that in practice, one can specify a277

maximum planning horizon for PASTA when the exact horizon is unknown.278

Robust to distractors Second, we show that PASTA is robust to distractors in the scene. We add 2279

distractor objects in CRS (which makes the scene have 4 objects in total). We observe that PASTA280

retains a normalized performance of 0.879 and 100% success rate (without distractor: 0.896/100%)281

using the same amount of samples to plan. Our planner is able to ignore the distractors using our282

attention structure at every step to only attend to the relevant components in the scene. We also added283

an example trajectory with distractor dough pieces to our website under “CRS with distractors”.284

Planning Horizon 3 4 5 6

Performance 0.896 0.866 0.90 0.878
Success Rate 5/5 4/5 5/5 4/5

Table 8: PASTA’s performance v.s. varying numbers of planning horizon in CRS.

9

5 Further Discussion on Limitations and Future Work285

More Efficient Planning Planning skill sequences with a large search space is a challenging problem286

by itself but much progress has been made by the task and motion planning community to obtain287

a plan skeleton [8, 9, 10]. For example, Caelan et al. [8] propose two methods, the first one is to288

interleave searching the skill sequence with lower-level optimization and the second one is to have289

lazy placeholders for some skills. Danny et al. [10] propose to predict skill sequences from visual290

observation. Recent works have also explored finding skill sequences using pre-trained language291

models [11, 12].292

Sim2Real Transfer for Real Dough One possible approach is to train with domain randomization293

to make the policy more robust to changing dynamics (e.g. stickiness) of dough. Another option294

is to perform online system identification of the dough dynamics parameters [13, 14] or real2sim295

methods [15, 16]. In future work, we can also integrate our method with other works that perform296

low-level dough manipulation in the real world, such as recent work from Qi et al. [17].297

Goal Specification Our planner requires specifying the goal with a point cloud and coming up298

with a point cloud goal is not always easy. However, rapid progress are being made with language-299

conditioned manipulation and future work can combine language to specify more diverse tasks.300

10

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

Figure 3: Latent space of PASTA in CutRearrange. We sample coordinates on a grid from the 2D
latent space encoding the shapes and then decoding each latent vector into a point cloud. We then
rearrange the decoded point cloud into the grid based on the corresponding coordinates in the latent
space.

11

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

Figure 4: Latent space of Flat 3D in CutRearrange. We sample coordinates on a grid from the 2D
latent space encoding the shapes and then decoding each latent vector into a point cloud. We then
rearrange the decoded point cloud into the grid based on the corresponding coordinates in the latent
space.

12

References301

[1] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan. Pointflow: 3d point302

cloud generation with continuous normalizing flows. ICCV, 2019.303

[2] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan. Diffskill: Skill abstraction304

from differentiable physics for deformable object manipulations with tools. ICLR, 2022.305

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on306

point sets in a metric space. Advances in neural information processing systems, 30, 2017.307

[4] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR308

Workshop on Representation Learning on Graphs and Manifolds, 2019.309

[5] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan. Plasticinelab: A310

soft-body manipulation benchmark with differentiable physics. In International Conference on311

Learning Representations, 2020.312

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,313

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,314

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine315

Learning Research, 12:2825–2830, 2011.316

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering317

clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.318

[8] C. Garrett, T. Lozano-Pérez, and L. Kaelbling. Sample-based methods for factored task and319

motion planning. 2017.320

[9] B. Kim and L. Shimanuki. Learning value functions with relational state representations for321

guiding task-and-motion planning. In Conference on Robot Learning, pages 955–968. PMLR,322

2020.323

[10] D. Driess, J.-S. Ha, and M. Toussaint. Deep visual reasoning: Learning to predict ac-324

tion sequences for task and motion planning from an initial scene image. arXiv preprint325

arXiv:2006.05398, 2020.326

[11] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,327

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic328

affordances. arXiv preprint arXiv:2204.01691, 2022.329

[12] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:330

Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.331

[13] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy332

with online system identification. arXiv preprint arXiv:1702.02453, 2017.333

[14] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.334

arXiv preprint arXiv:2107.04034, 2021.335

[15] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilistic336

inference for robotics simulators. arXiv preprint arXiv:1906.01728, 2019.337

[16] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing338

the sim-to-real loop: Adapting simulation randomization with real world experience. In 2019339

International Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.340

[17] C. Qi, X. Lin, and D. Held. Learning closed-loop dough manipulation using a differentiable341

reset module. IEEE Robotics and Automation Letters, 7(4):9857–9864, 2022.342

13

	Implementation Details
	Entity Encoding
	Details on Training Set Feasibility Predictor
	Details on the Attention Structure for Planning with Set Representation
	Network Architectures
	Training Details

	Details on Simulation Experiments
	Hyperparameters for Simulation Dough
	Hyperparameters for DBSCAN
	Hyperparameters for PASTA
	Receding Horizon Planning for CRS-Twice

	Details on Real World Experiments
	Heuristic Policies
	Procedure for Resetting the Dough
	Procedure for the Human Baseline
	Procedure for Making the Real Dough

	Additional Experiments
	Ablation Studies
	Visualization of the Latent Space
	Runtime of PASTA
	Additional metrics for real world experiments
	Robustness of PASTA

	Further Discussion on Limitations and Future Work

