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Abstract: Effective planning of long-horizon deformable object manipulation
requires suitable abstractions at both the spatial and temporal levels. Previous meth-
ods typically either focus on short-horizon tasks or make the strong assumption that
full-state information is available. However, full states of deformable objects are
often unavailable. In this paper, we propose PlAnning with Spatial and Temporal
Abstraction (PASTA), which incorporates both spatial abstraction (reasoning about
objects and their relations to each other) and temporal abstraction (reasoning over
skills instead of low-level actions). Our framework maps high-dimension 3D point
clouds into a set of latent vectors and plans skill sequences with the latent set
representation. Our method can solve challenging, novel sequential deformable
object manipulation tasks in the real world, which require combining multiple
tool-use skills such as cutting with a knife, pushing with a pusher, and spreading
dough with a roller. Additional materials can be found on our project website.!
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Figure 1: Long-horizon dough manipulation with diverse tools. Our framework is able to solve long-horizon,
multi-tool, deformable object manipulation tasks that the agent has not seen during training. The illustrated task
here is to cut a piece of dough into two with a cutter, transport the pieces to the spreading area on the left (with a
high-friction surface) using a pusher, and then flatten both pieces with a roller.

1 Introduction

Consider a typical cooking task of making dumplings from dough. People plan over which piece
of dough to manipulate and which tool to use in sequence, incorporating both spatial and temporal
abstractions. A spatial abstraction reasons about objects, parts, and their relations to each other, such
as reasoning about pieces of dough instead of reasoning about individual dough particles; such a
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spatial abstraction enables efficient planning and compositional generalization. On the other hand, a
temporal abstraction incorporates abstract actions represented as a set of skills. With abstract actions,
the agent plans for the types and parameters of the skills to execute over a period of time, instead
of making plans for low-level actions such as joint torques at each time step. Temporal abstractions
allow planning at the skill level, enabling more efficient optimization for solving long-horizon tasks.
An autonomous robot that operates in unstructured environments should be able to reason about
world dynamics using high-level spatial and temporal abstractions instead of reasoning only over the
physical state, raw sensory observation, or low-level robot actions.

The research community is making rapid progress towards developing state abstractions for manipu-
lating deformable objects, including key points [1, 2], graphs [3, 4], dense object descriptors [5], or
implicit functions [6, 7]. However, most of these approaches do not make abstractions at the temporal
level, limiting their use to short-horizon tasks. Methods are also being developed with temporal
abstractions, planning over a set of skills to solve long-horizon tasks [8, 9, 10]. However, the lack of
spatial abstraction severely limits their generalization ability. Therefore, it remains a key question
in robot learning on how to learn spatial and temporal abstractions within a unified framework for
complex and long-horizon manipulation tasks.

In this work, we focus on the challenging task of sequential deformable object manipulation, as
shown in Figure 1. We consider a set of dough manipulation tasks that require sequentially applying
different skills using multiple tools to manipulate dough, such as spreading using a roller, cutting
using a knife and pushing using a pusher, where the longest task requires applying 6 skills in sequence.
Deformable objects like dough have nearly infinite degrees of freedom. As such, in this work, we
dynamically cluster points in a point cloud into different groups and learn a point cloud encoder to
map each element in the group into a latent vector. In this way, we obtain a compositional 3D set
representation of the state space. Given an observation and a target point cloud, we then sample
skill sequences with subgoals generated in this latent space. We learn skill abstraction modules to
determine the feasibility and score of each skill sequence and use them for planning.

Our contribution of this paper is a framework that PIAns with Spatial and Temporal Abstraction
(PASTA) by learning a set of skill abstraction modules over a 3D set representation. Our framework
can compose a set of skills to solve complex tasks with more entities and longer-horizon than what
was seen during training. We show that PASTA significantly outperforms an ablation that performs
planning with a flat representation without a spatial abstraction (e.g. without a set representation).
Finally, our planner can be trained in simulation and transferred to the real world.

2 Related Work

Model-based Planning for Sequential Manipulation. One line of research for sequential manipu-
lation is Task and Motion Planning (TAMP). TAMP systems typically assume known object states
and known effects for the action operators [11, 12, 13, 14, 15]. However, it is difficult to estimate
states and dynamics for unknown objects or from partial observations. While recent works have
made progress in learning certain components of the system, such as the logical states [16] from high
dimensional observations or learning action models [17, 18, 19] from interactions, they still require
either known states or known action operators. In contrast, we do not assume known states or action
operators, and learn a 3D set representation as well as the action model with the representation.

Another approach learns dynamics directly from visual observations [3, 20, 21]. Most of these works
focus on learning a one-step dynamics model for planning short-horizon tasks. A few works learn the
dynamics model over a set of skills and use it for sequential manipulation of rigid objects [22, 23] or
deformable objects [8]. However, these works do not use an object-centric representation and thus
cannot easily generalize to more complex scenes. In contrast, our framework unifies both temporal
and spatial abstraction and can perform long-horizon manipulation for complex tasks with more
objects than in previous work, as we will show.

Planning with Spatial Abstraction. Prior works leverage spatial abstraction to facilitate solving
tasks that involve complex dynamics and high-dimensional observations. These works either model a
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Figure 2: Overview of our proposed framework PASTA. (a) We first generate demonstration trajectories
for each skill in a differentiable simulator using different tools. (b) We then sample point clouds (pc) from
the demonstration trajectories to train our set skill abstraction modules. (c) We map point clouds into a latent
set representation and plan over tool-use skills to perform long-horizon deformable object manipulation tasks.
Pebs p9°e! gre the observation and target pc; w; ; denotes component j at step 4. The example shows our
method performs the CutRearrange task, which requires cutting the dough into two pieces with a knife and
transporting each piece to its target location.

compositional system with Graph Neural Networks (GNN) [3, 4, 7, 24, 25] or learn policies directly
from object-centric representations [26, 27]. These works demonstrate compositional generalization,
but they learn policies or one-step dynamics models for planning, which can be difficult for solving
long-horizon tasks. In contrast, our framework connects temporally extended spatial abstractions with
a feasibility predictor to plan over a longer time horizon. Xu et al. [28] learns a planner grounded
on object-centric visual observation and can solve long-horizon tasks. However, its planner takes a
symbolic goal and plans in a predefined symbolic domain to output symbolic subgoals. In contrast,
our method does not require defining a symbolic planning domain.

Deformable Object Manipulation. Deformable objects have nearly infinite degrees of freedom and
complex dynamics, making them very challenging to manipulate. Previous works have explored
pouring liquid [6, 29, 30], rope manipulation [31, 32], and cloth manipulation [33, 34, 4, 35, 36].
Other papers have also explored manipulating elasto-plastic objects such as deforming them by
grasping [3, 37], rolling [38, 39, 40], or cutting [41]. However, these works mostly only consider
manipulation with one skill at a time. In contrast, we consider the task of sequential manipulation
using multiple tools. The one exception is DiffSkill [8], where multiple skills are chained together.
However, DiffSkill uses RGB-D images to represent the scene. In contrast, we use a 3D set
representation that separately encodes each entity in the scene, enabling compositional generalization
to tasks with more objects and longer-horizon. Furthermore, we use point clouds as the input and we
are able to transfer our planner from simulation to the real world.

3 Method

Given a point cloud of the dough P°?* and a goal point cloud P9°%, our objective is to execute a
sequence of actions aq, ..., ar,,, that minimizes the distance between the final observed point cloud
and the goal D(Pq‘ltbjt , Pgo“l) where Pfﬂf’j is the observation point cloud at time 7},;. We aim to
solve long-horizon tasks that require chaining multiple skills in novel scenes with more objects than
training. To do so, we present a general framework that incorporates spatial and temporal abstractions,
as summarized in Figure 2. We use point clouds as input to all our modules to enable easier transfer

from simulation to the real world and to enable robustness to changes in viewpoint.



We assume access to an offline dataset of demonstration trajectories Dgep,, from K skills, where
each trajectory demonstrates one of the skills using one tool. We can learn skill policies by imitation
learning from these demonstrations. To chain these skills to solve long-horizon tasks, we train a set
of skill abstraction modules (Sec. 3.3) which can be used for planning in the latent space (Sec. 3.1).

3.1 Spatial Abstraction from Point Clouds

Scene Decomposition: First, we describe our spatial abstraction of the point cloud observation.
Given a point cloud P € RV*3, we first cluster the points into different components based on their
proximity in space. In this paper, we apply DBSCAN [42] to P and group points into a set of entity
point clouds {P; € RMiX3},_; - by separating points from high-density regions into different
clusters. While other works on scene decomposition can also be used [43], we find this simple method
to be sufficient for our tasks.

Entity Encoding: Planning directly in the high-dimensional space of point clouds is inefficient. To
enable efficient planning in a latent space, we train a point cloud variational autoencoder (VAE) [44].
The VAE model includes three modules: A point cloud encoder ¢ : RYi*3 — 1 that maps each
entity point cloud to a latent vector, a decoder v : L/ — R™:*3 that maps from a latent space back
into a point cloud, and a prior distribution over the latent space p,, : i — [0, 1] which can be used to
generate samples from the latent space during planning. We can then encode the point clouds { P, }
into a set of latent vectors: {u;};—1...c as our set latent representation. We further achieve translation
invariance by separating the translation from its shape embedding. See the Appendix for details.

3.2 Learning Skills by Imitation

Given the demonstration trajectories Dyenmo of K skills, we first distill these trajectories into K
closed-loop policies. The input to the policy for the k" skill 7, is a subset of the observed point
clouds { P} and goal point clouds { P/}, and a tool point cloud Pto°l. The policy only sees a subset
of the dough point cloud and goal point cloud in the scene to enable compositional generalization
to scenes with more objects. For example, a dough-spreading policy will only see the dough being
spread. To achieve this, we train each set point cloud policy with behavior cloning and hindsight
relabeling [45] on the demonstration dataset with an attention mask that filters out the non-relevant
entity point clouds. During planning, this attention mask will be provided by the planner. The policy
outputs an action at each timestep to control the tool directly.

3.3 Neural Spatial and Temporal Abstraction

We assume that each skill learned from the demonstration is only capable of performing a single-stage
task with a single tool for a single object. To solve longer-horizon tasks, we further learn a feasibility
predictor and a cost predictor. They can be used to plan subgoals that chain the skills into a sequence,
such that each subgoal is feasible for the corresponding policy to reach and the final subgoal reaches
a given goal. Additionally, all these modules take in the set representation {P; ... Pc} as input to
achieve compositional generalization.

Set Feasibility Predictor Similar to DiffSkill [8], we train a feasibility predictor fx(U°,UY) for each
skill, where U° = {ul}i=1..n,, U9 = {uf }j=1...n, are latent set representations of an observation
and goal point cloud respectively. The feasibility predictor outputs a value in [0, 1] denoting if the
goal can be reached from the observation by executing the & skill. In DiffSkill, the feasibility
predictor uses a flat representation that takes in a single latent vector for all objects in the scene
as input. However, as our skills such as cutting or spreading only need to take in a subset of the
objects as input, we use the same attention method for the feasibility and assume that the feasibility
predictor only takes as input a subset of the full set representation U°e C U°,U9 C U9, where
Ue = {ug}i=1.. Nk,U = {u }i=1...m,, Here, Nj, and M;, are the number of components in the
observation and goal for sklll k. The number of components in the observation and goal can be
different since the number of components can change before and after executing a skill; for example,
the cut skill takes one component as observation and cuts it into two components. As another example



for robot assembly [46], the number of entities increases when a piece is disassembled into parts and
the number of entities decreases when the parts are assembled. In this work, we manually define the
number of entities Ny, M, per skill. Determining which subset to attend to when executing each
skill can be difficult; we make this decision during planning and defer the details to Sec. 3.4. We
parameterize f to be invariant to permutation using max-pooling layers. See Appendix for details.

We train the feasibility predictor of skill £ with positive examples Ue , U9, where the goal U9 can be
reached from the observation U° within T timesteps by executing sk111 k. The negative examples are
goal {79 that cannot be reached from the observation U° using skill k. During training, we obtain
positive pairs for the feasibility predictor by sampling two point clouds (P°%¢, P9°%) from the same
trajectory in the demonstration set. To find U°, U9, we first cluster the observation and goal point
clouds into two sets { P{}, { P/} respectively. Then, we match point clouds in the observation set
to those in the goal set by finding the pairs of point clouds that are within a Chamfer distance of e:
{(P?, Pjg) | Dehamfer (P2, P;’ ) < €}. We then remove these point clouds from the corresponding
set, since these are the point clouds that have already been moved to the target location in the goal.
We can then encode the remaining point clouds into Ue,U9 as explained above. We generate hard
negative samples by replacing one entity in the positive examples with a random latent vector.

Set Cost Predictor As we do planning in a latent space, we train a set cost predictor as our planning
objective which determines how close a plan is to a given goal. The set cost predictor C' takes
two latent set representation as input U°, UY. Since our tasks focus on matching each entity in
the observation with one in the goal, we assume they have the same number of components, i.e.
|U°| = |U9] = N,. To compute the cost, we try to find the matching entity with the minimal

matching cost: C({uf}, {ug}) = arg min, Zfil co(u?,u (l)) where o is a permutation and cy is
a cost prediction network parameterized by an MLP trained to predict the Chamfer Distance between
the point clouds corresponding to the two latent vectors. This allows faster planning compared to first

decoding latent vectors to point clouds and then computing their distance. Finally, optimization of
the cost is done by performing Hungarian matching between the two sets containing latent vectors.

3.4 Planning with Set Representation

Given an observation and a goal point cloud P°%¢, P9°% we plan for the types of skills to apply
in sequence, the attention for each skill (i.e. find Ue C U?), and the latent subgoals for each skill
(i.e. the exact value for each latent vector in U®). As the simplest approach, we run a three-level
nested optimization: In the top level, we exhaustively search over the combinations of skills to
apply at each step, i.e. k..., kg, where k;, indexes the skill applied at the high-level step h.
We only keep the sequences that end with the same set cardinality as the goal by ensuring that
ZhH:1 My, — Ny, = Ny — N,, where My, and Ny, are the number of observation and goal
components for the skill applied at step h and N, and N, are the number of components in the
observed and target point clouds.

In the second-level optimization, we search over different attention structures. Denote the latent set at
the high level step h to be U". We formally define the attention structure at step h to be I", which
consists of a list of indices, each of length Ny, , such that T h selects a subset from U" ! to be the
input to the feasibility predictor, i.e. gh-t Uh 1 C U1, Assume that we have N}, components
before applying skill &y, i.e. [U"~!| = N}, and sk111 ky, takes K}, components as its observation. We
can search over all C Jl\f combinations of attention structures. For components not considered by the
skill, its latent vector will remain the same at step /. The combination of each skill attention yields an
attention structure I for the whole plan, as illustrated in Fig. 2(c). For this level of optimization, we
use a sampling-based procedure to avoid an exhaustive search over topologically equivalent attention
structures. See the Appendix for how we do this efficiently.

In the low-level optimization, for each attention structure I, we follow the optimization in DiffSkill [8].
We first sample multiple initializations for the set of latent subgoals U, where each latent vector in the
set is initialized from our generative model. We can then perform gradient descent to further optimize
the latent subgoals on the following objective:
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where K is the skill sequence, I is the attention structure of the plan, U is the set of all latent subgoals,
Uh = {ui’}zzl M,, are the latent subgoals at step h, U% = e C U? is the attended observed set,
and UY is the goal set. Finally, we can use our policy to execute our plan by following each subgoal.
A summary of our method can be found in Algorithm 1.

Algorithm 1: Planning with Spatial and Temporal Abstraction (PASTA)

Input :Demonstration Dataset D gepmo0, skill horizon T', planning horizon H, modules for neural
skill abstraction 7y, fx, 79, Point Cloud VAE with encoder ¢, decoder v, prior p,,

for each valid skill sequence k1, ... kg do

for each valid attention structure I', ... I do

L Initialize different latent subgoals U, ... U from p,, ;

Optimize latent subgoals f]l, ...UH according to Sec. 3.4 to obtain cost J(k,I, U) ;

CEloose skill sequence k, attention structure I, and subgoals U that minimizes J(k,I, U) ;
for h < O0to H —1do

Decode the subgoal from U" using the decoder 1 ;
| Execute policy 7, following the subgoal ;

4 Experiments

Our experiments are categorized into three parts: In Sec. 4.1, we describe the experimental setups and
the baselines we consider. In Sec. 4.2 and Sec. 4.3, we show that PASTA outperforms the baselines
and ablate different components in our framework. In Sec. 4.4, we demonstrate that PASTA can be
effectively transferred to the real world without any fine-tuning.

4.1 Simulation Tasks and Baselines

Environment setups We consider several long-horizon dough manipulation tasks and divide them
into two categories. First, we consider the three tasks from Diffskill [8]: LiftSpread, GatherTransport,
and CutRearrange. These tasks require the agent to sequentially compose at most two skills to spread,
cut or transport the dough. We further propose two new generalization tasks: CutRearrangeSpread
(CRS) and CRS-Twice, where there are more entities during testing than during training. Similar to
prior work [8], we specify the minimal planning horizon required for each task. Our approach also
succeeds when we increase the horizon up to twice as long. See the Appendix, Sec 4.5 for details.

Generalization tasks The CRS task provides a number of demonstration trajectories performing
one of the three skills: Cutting with a knife, pushing with a pusher, and spreading with a roller. The
demonstration of each skill only shows a tool manipulating a single piece of dough. During testing,
the agent needs to cut a dough into two, transport one piece to a spreading area and then spread it.
Generalization to more entities is required as there will be two entities in the scene, whereas during
training there was only one entity. Can we do even more generalization? In the CRS-Twice task, we
use the same agent trained on the CRS dataset and ask it to cut two pieces of dough from a chunk,
transport both of them to a spreading area, and spread them both. This is a 6-horizon task with up
to 3 entities in the scene, much more complex than the skill demonstrations the agent is trained on.
Due to the long-horizon nature of CRS-Twice, we specify the skill skeleton and use receding horizon
planning for all the planning-based methods. See the Appendix for details.

Baselines We consider several baselines in simulation: First, a gradient-based trajectory optimizer
with oracle information (Traj-Opt), which can solve single-stage tasks for deformable object manipu-
lation as shown in prior works [47]. Second, a model-free RL with Soft Actor Critic [48] with RGB-D
image input (SAC-Image). Third, a SAC agent that takes in the dough, target dough, and tool point
clouds as input, the same as our method (SAC-Point). Fourth is DiffSkill, a model-based planning



method from Lin et al. [8], which takes RGB-D images as input and has no spatial abstraction.
The last one is Flat 3D, which extends DiffSkill to use 3D point clouds as input, with a “flat” 3D
representation that encodes the whole scene to a single latent vector without any spatial abstraction.

Metric We specify goals as 3D point clouds of different geometric shapes such as boxes and
spheres at specific locations. We report the normalized decrease in the Earth Mover Distance (EMD)
approximated by the Sinkhorn diverge [49] computed as s(t) = %, where sg, s; are the initial
and current EMD. We additionally set a threshold for the score to determine the success of a trial.

4.2 Comparison with Baselines in Simulation

Task (Horizon) DiftSkill tasks Generalization tasks
Method LiftSpread (2) GatherMove (2) CutRearrange (3) CRS (3) CRS-Twice (6)

Traj-Opt (Oracle) [47] 0.818 /40% 0.403 / 0% 0.511/20% 0.312/0% 0.227/ 0%
SAC-Image [48] 0.797 / 0% 0.567 / 20% 0.103 /0% 0.562 /0% 0.365 /0%
SAC-Point [48] 0.796 / 0% 0.603 / 40% 0.147 /0% 0.573 /0% 0.353/0%

DiffSkill-Image [8] 0.920 / 100% 0.683 / 60% 0.249 / 20% -0.505 /0% -
Flat 3D (Ours) * * 0.797 1 60% -0.712 /0% -0.108 / 0%
PASTA (Ours) 0.904/100%  0.715/100% 0.837/80% 0.896/100%  0.604 /40%

Table 1: Normalized improvement and success rate of all methods on two sets of tasks: tasks in DiffSkill and
tasks that require generalization to more steps and entities. For CRS and CRS-Twice, training data only contains
skills operating on one component of dough but at test time there are more than two components. Only the
best-performing baselines in CRS are evaluated on CRS-Twice. For LiftSpread and GatherMove, we consider
the whole scene as a single spatial abstraction, so Flat 3D is equivalent to PASTA.

Table 1 shows the quantitative results of simulation tasks. First, we show that using a 3D representation
is beneficial to planning and complex manipulation, as PASTA matches DiffSkill in LiftSpread and
outperforms it in all the other tasks. Second, we highlight PASTA’s compositional generalization
power in CRS and CRS-Twice, in which there are additional components of dough at test time.
Effectively using spatial abstraction to model the scene, PASTA achieves 100% success rate in CRS
and retains a good performance in CRS-Twice. All the baselines, especially the planning baselines
(DiffSkill, Flat 3D) fail dramatically, as they can only produce plans that consist of scenes seen
in training. Impressively, PASTA is the only approach that reaches a non-zero success rate on
these tasks that require compositional generalization. PASTA has a computational complexity of
O(K*H -|I| - Tg), where K is the number of skills, H is the planning horizon, |I| is the number
of attention structures and T is the time it takes to solve each gradient-based optimization. We
discuss more efficient planning algorithms in the limitation section as well as in the Appendix, Sec. 5.

4.3 Ablation analysis Ablation Method Performance / Success
L. No Hard Negatives Feasibility 0.740 / 40%

Table 2 shows the quantitative performance No Sampling Planning -0.455/ 0%

of each ablation and PASTA in CutRearrange. No Gradient Planning 0.329 /0%

PASTA (Ours) 0.837/80%

First, we consider a variant of feasibility predic-
Table 2: Ablation results from CutRearrange.

tor’s training, which removes the hard negative
samples and only uses random negative sampling (No Hard Negatives), which halves the success
rate. Second, we consider two variants of the planner, one without gradient-descent (No Gradient
Planning) and one without sampling (No Sampling Planning). The results show that both components
are crucial to planning. We provide more ablations on the policy and the planner in the Appendix.

4.4 Real World Experiments

Figure 3 shows our real world setup. We use a Franka robot with an Azure Kinect camera capturing
the RGB-D observation of the workspace. The robot is equipped with a tool station [50] that allows
an automatic change of tools. For real world “dough”, we use Kinect Sand as a proxy because of its
stable physical property. We transfer the feasibility predictor and cost predictor of PASTA directly
from simulation and define heuristic controllers for the skills. For evaluation, we first generate a
desired target point cloud and then reset the dough to its initial shape and record its point cloud. We
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Figure 3: Real world setup and execution with planned subgoals. Our workspace consists of a Franka robot,
a top-down camera, and a novel tool changer behind the robot that allows the robot to automatically switch tools.
For each task, we show frames after executing a skill overlaid with the decoded point cloud subgoal; we report
the final performance in red and overlay the ground truth target in green in the final frame. Additionally, we
include a 3D view of the last generated subgoal to show the shape variations.

then plan using PASTA and then use the heuristic controllers to follow the plan. Finally, we report
the normalized improvement EMD. We compare with the Flat3D method and also with human.

We evaluate three of the simulation tasks: CutRearrange, CRS, and CRS-Twice. For each task, we
evaluate the same four initial and target shapes for all methods and report the performance in Table 3.
Figure 3 shows the keyframes from the execution of PASTA. We overlay the planned subgoals as well
as the final goal. PASTA performs on par with human in the real world, highlighting the robustness
of our planner and the advantage of using 3D representation for sim2real transfer.

Method Task (Horizon) ¢ Rearrange (3) ~ CRS(3)  CRS-Twice (6)

Flat 3D 0.351 £ 0478  0.007 £ 0.429 -
PASTA (Ours) 0.836 +0.029  0.854 £ 0.016 0.795 £ 0.035
Human 0910 £0.014  0.863 £0.018 0.895 £ 0.013

Table 3: Normalized improvement on real world tasks. Each entry shows the mean and std of the performance
over 4 runs. Flat 3D does not produce any meaningful plan for CRS, so we do not evaluate it on CRS-Twice.

5 Conclusions and Limitations

In this work, we propose a planning framework named PASTA that incorporates both spatial and
temporal abstraction by planning with a 3D latent set representation with attention structure. We
demonstrate a manipulation system in the real world that uses PASTA to plan with multiple tool-use
skills to solve the challenging deformable object manipulation tasks, and we show that it significantly
outperforms a flat 3D representation, especially when generalizing to more complex tasks.

Limitations: First, we only transfer the planner to the real world and use heuristic controllers instead
of the policy trained in simulation. This is due to the sim2real gap caused by the differences in
dough’s physical parameters, table friction, and occlusions from the robot arm. Prior work [38]
shows promising results in transferring a closed-loop policy taking partial point clouds as input, and
future work can explore better sim2real methods. Second, our planner exhaustively searches overall
skill combinations and attention structures and does not scale well to longer sequences with more
skills. Future work can incorporate more efficient search algorithms or priors to prune the search
space. Finally, we rely on an unsupervised clustering method for entity decomposition and a point
cloud VAE for mapping an observation to our latent set representation. Future work can incorporate
self-supervised methods for learning the decomposition. For further discussion on the limitations and
future work, please see Sec. 5 of the Appendix.
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