
MIRA: Mental Imagery for Robotic Affordances
Supplementary Material

Lin Yen-Chen1, Pete Florence2, Andy Zeng2, Jonathan T. Barron2,
Yilun Du1, Wei-Chiu Ma1, Anthony Simeonov1, Alberto Rodriguez Garcia1, Phillip Isola1

1MIT 2Google

A Additional Real-world Results

Figure 1: Additional Real-world Qualitative Results. Top-row: placing a metal sphere into cups; middle-row:
packing flosses; bottom-row: packing metal cubes.

Task # Train (Samples) # Test Succ. %

placing-the-metal-sphere-into-cups 10 10 80.0
packing-flosses 10 10 60.0
packing-metal-cubes 10 10 70.0

Table 1: Success rates (%) of MIRA trained and evaluated on 3 real-world
tasks. Model weights are not shared.

We present qualitative results in Fig. 1 and rec-
ommend readers watch the supplementary video
for more comprehensive qualitative results. All
models are trained with 10 demonstrations per-
formed on the real robot. For each task, we test
our model with 10 random configurations of the
environment and present the quantitative results
in Table 1. placing-the-metal-sphere-into-cups is
trained and evaluated on the same metal sphere and
5 different cups. packing-flosses and packing-metal-cubes are trained and evaluated using the same kits
while different numbers of objects are placed on the table or stored in the container.

A.1 Examples of Failures

We discuss the representative failures for each task. For placing-the-metal-sphere-into-cups, our model
sometimes predicts the wrong pick location and thus fails to pick up the sphere. Also, when the cups are
too tall (e.g., goblet), the camera mounted on the robot fails to capture multi-view RGB images that always

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

contain the object, which results in poor NeRF reconstruction. For packing-flosses, NeRF’s predicted
depths are sometimes incorrect when the empty slot is not supported by the black stand. This will cause
the end-effector to go “too deep” toward the container. For packing-metal-cubes, our model sometimes
predicts the wrong picking location and fails to pick up the cubes.

B Challenges of Perspective Ray Casting

In Fig. 2, we present an additional motivation to adopt orthographic ray casting in MIRA.

Figure 2: Challanges of Perspective Ray Casting. We visualize two images synthesized
by NeRF using perspective ray casting. (a) A picking ground truth pixel that is proper
for training. (b) An picking ground truth pixel that is occluded by the robot arm, which
in turns fails the policy training. The occlusion happens because perspective ray casting
needs to move the camera further away from the scene to perceive the whole scene. This
adjustment accidentally captures the robot arm that occludes the ground truth pixel. In
contrast, images rendered with orthographic ray casting does not depend on the distance
between the camera and the scene. Therefore, one can easily tune the near / far plane to
ignore the distractors (e.g., robot arm).

C Simulation Tasks

In the following table, we summarize the unique attributes of each simulation task in our experiments.

Task precise
placing

multi-modal
placing distractors unseen

colors
unseen
objects

block-insertion ✓ ✗ ✗ ✗ ✗
place-red-in-green ✗ ✓ ✓ ✗ ✗
hanging-disks ✓ ✗ ✗ ✓ ✗
stacking-objects ✓ ✗ ✗ ✗ ✓

Table 2: Simulation tasks. We
extend Ravens [1] with four new
6-DoF tasks and summarize their
associated challenges.

D CUDA Kernel for Orthographic Ray Casting

1

2 inline __host__ __device__ Ray pixel_to_ray_orthographic (
3 uint32_t spp ,
4 const Eigen :: Vector2i& pixel ,
5 const Eigen :: Vector2i& resolution ,
6 const Eigen :: Vector2f& focal_length ,
7 const Eigen :: Matrix <float , 3, 4>& camera_matrix ,
8 const Eigen :: Vector2f& screen_center ,
9 float focus_z = 1.0f,

10 float dof = 0.0f
11) {
12 auto uv = pixel.cast <float >(). cwiseQuotient (resolution .cast <float >());
13

14 Eigen :: Vector3f dir = {
15 0.0f,
16 0.0f,
17 1.0f
18 };
19 dir = camera_matrix .block <3, 3>(0, 0) * dir;
20

21 Eigen :: Vector3f offset_x = {
22 (uv.x() - screen_center .x()) * (float) resolution .x() / focal_length .x(),
23 0.0f,

2

24 0.0f
25 };
26 offset_x = camera_matrix .block <3, 3>(0, 0) * offset_x;
27 Eigen :: Vector3f offset_y = {
28 0.0f,
29 (uv.y() - screen_center .y()) * (float) resolution .y() / focal_length .y(),
30 0.0f
31 };
32 offset_y = camera_matrix .block <3, 3>(0, 0) * offset_y;
33

34 Eigen :: Vector3f origin = camera_matrix .col (3);
35 origin = origin + offset_x + offset_y;
36

37 return {origin , dir };

Listing 1: CUDA kernel for running orthographic ray casting in instant-NGP [2].

References
[1] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin, D. Duong,

V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for robotic manipulation.
CoRL, 2020.

[2] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a multiresolution
hash encoding. In SIGGRAPH, 2022.

3

	Additional Real-world Results
	Examples of Failures

	Challenges of Perspective Ray Casting
	Simulation Tasks
	CUDA Kernel for Orthographic Ray Casting

