
α = 0 α = 1

Figure 1: Continuous hand-to-robot evolution for Jaco robot. We show one evolution path from
human dexterous hand (α = 0) to a commercial Jaco robot with three-finger Jaco gripper (α = 1).
From left to right, we show intermediate robots along the path. Zoom in for better view.

HERD: Continuous Human-to-Robot Evolution for
Learning from Human Demonstration –

Supplementary Material

Xingyu Liu Deepak Pathak Kris M. Kitani
Carnegie Mellon University

A Overview

In this document, we provide additional information as presented in the main paper. We present
additional technical details of our solution to human-to-robot continuous evolution in Section B.
We introduce our proposed method for learning expert dexterous robot policy from human visual
demonstration in Section C. We provide details on the hyperparameter settings of our experiments
in Section D. Lastly, in Section E, we discuss further on related works and problems.

B Details on Hand-to-Robot Continuous Evolution

Virtual Confinement of the Robot End Effector The implementation of the dexterous hand robot
simulation usually assumes the elbow is able to move freely in all 6 degrees. This is modeled as
the elbow being connected by six virtual joints that are attached to a fixed mount point in space.
However, in our solution of human-to-robot evolution, the elbow of the dexterous robot is modeled
as being connected to the robot end effector. If the robot end effector is also allowed to move freely
at the start of the evolution, a well-trained policy on the original dexterous robot will be ruined by
the motion of the robot end effector, because the original policy assumes that the virtual joints are
mounted to a fixed base. The policy transfer will fail even before the training on the continuously
evolving robots starts.

We propose a mechanism named virtual confinement to address this. Virtual confinement exerts
restrictions on the motion range of the robot end effector. At the start of the evolution, the allowed
motion range of the robot end effector in all degrees of freedom is set to 0 which means the robot
end effector is completely frozen. This means the virtual free joints of the dexterous hand robot are
equivalently still mounted on a fixed base so that the original dexterous hand robot expert policy can
be seamlessly imported to the combined robot. The motion range of the robot end effector gradually
increases with the evolution progress and eventually allows the robot to move freely in the space
of the environment. The virtual confinement does not correspond to any entity in the simulation
environment but is modeled as several virtual joints mounted in a virtual base in space. The position
of the virtual base is the same as the initial position of the robot end effector. The restriction on
the motion range of the virtual joints can be implemented by the equality mechanism in MuJoCo

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Figure 2: Continuous evolution of the virtual confinement of the robot end effector. The red
semitransparent 3D box denotes the 3D space that the robot end effector is allowed to move to.
Initially the end effector is completely frozen in its motion. The allowed 6D motion range gradually
increases with evolution.

P

R

F

R
R

R

R
P

R

R

R

R
P
R

R

R

R
R

R

R

R
R

R

R

R
R

R

F

R
R

Free Joint

Prismatic Joint

Revolute Joint

Joints Frozen in Dexterous 
Hand, Evolve to be Active in 
Rethink Gripper

Joints Active in Dexterous 
Hand, Evolve to be Frozen in 
Rethink Gripper

Body 

Figure 3: Kinematic tree of dexterous hand robot. All revolute and free joints will gradually
freeze during evolution. The two prismatic joints are initially frozen and evolve to be active.

Engine [1]. We use the proposed virtual confinement mechanism in all experiments in the main
paper. The virtual confinement mechanism is illustrated in Figure 2.

Gripper Finger Synchronization The fingers of commercial robot grippers are usually synchro-
nized in motion as position servo so that the grasping action is controlled by a single signal. On
the other hand, the motion of the human hand fingers are asynchronous and independent from each
other. To interpolate such behavior, we add additional position servo joints to the human hand. Dur-
ing robot evolution from human hand to the target robot, the motion range of the position servos
gradually increase while the range of the independent joints gradually shrink to zero.

Disabling Collision Since the Saywer robot end effector is not originally designed to be mounted
with a dexterous hand robot, it is likely that the dexterous hand robot and the target Sawyer robot
can collide during simulation unexpectedly and cause unstable behavior. Therefore, during simula-
tion, we manually disable all pairs of collisions between the human hand bodies and robot bodies.
Disabling collisions can be implemented by the exclude mechanism in MuJoCo Engine [1].

Human-to-robot Evolution Specifics We illustrate the kinematic tree of the dexterous hand robot
in Figure 3. For Sawyer robot with Rethink gripper, during evolution, all revolute joints and the
elbow free joint gradually freeze to have a range of 0. On the other hand, the two synchronized
prismatic joints are initially frozen with a range of 0, and their range gradually increases until the
same full range as the Rethink gripper. During the evolution, all bodies of the middle finger, ring
finger and little finger gradually shrink to zero-size and disappear. The shapes of the bodies of the
first finger, thumb and palm change continuously and become the same shape as the Rethink gripper
eventually. The robot parameters of the Sawyer robot where the dexterous hand robot is attached to
are not changed, except the range of virtual confinement which has the same evolution progress as
the elbow joint range.

2



ID Robot Parameter ID Robot Parameter ID Robot Parameter
1 th proximal length 15 lf distal length 29 mf shape
2 th middle length 16 th joint 4 range 30 rf shape
3 th distal length 17 th joint 3 range 31 lf shape
4 ff proximal length 18 th joint 2 range 32 th knuckle position
5 ff middle length 19 th joint 1 range 33 ff knuckle position
6 ff distal length 20 th joint 0 range 34 mf knuckle position
7 mf proximal length 21 ff joint 3 range 35 rf knuckle position
8 mf middle length 22 ff joint 2 range 36 lf knuckle position
9 mf distal length 23 ff joint 1 range 37 palm shape
10 rf proximal length 24 ff joint 0 range 38 wrist joints
11 rf middle length 25 th slide joint 39 arm length
12 rf distal length 26 ff slide joint 40 elbow joint range
13 lf proximal length 27 th shape
14 lf middle length 28 ff shape

Table 1: Space of robot parameter evolution for two-finger Sawyer robot as target. th, ff, mf,
rt and lf represent thumb, first finger, middle finger, ring finger and little finger respectively. The
robot evolution is described by D = 40 independent parameters in evolution in total.

ID Robot Parameter ID Robot Parameter ID Robot Parameter
1 th proximal length 15 lf distal length 29 th shape
2 th middle length 16 th joint 4 range 30 ff shape
3 th distal length 17 th joint 3 range 31 mf shape
4 ff proximal length 18 th joint 2 range 32 rf shape
5 ff middle length 19 th joint 1 range 33 lf shape
6 ff distal length 20 th joint 0 range 34 th knuckle position
7 mf proximal length 21 ff joint 3 range 35 ff knuckle position
8 mf middle length 22 ff joint 2 range 36 mf knuckle position
9 mf distal length 23 ff joint 1 range 37 rf knuckle position
10 rf proximal length 24 ff joint 0 range 38 lf knuckle position
11 rf middle length 25 rf joint 3 range 39 palm shape
12 rf distal length 26 rf joint 2 range 40 wrist joints
13 lf proximal length 27 rf joint 1 range 41 arm length
14 lf middle length 28 rf joint 0 range 42 elbow joint range

Table 2: Space of robot parameter evolution for three-finger Jaco robot as target. th, ff, mf,
rt and lf represent thumb, first finger, middle finger, ring finger and little finger respectively. The
robot evolution is described by D = 42 independent parameters in evolution in total.

The evolution process for the three-finger Jaco robot is slightly different from Sawyer. In Jaco robot,
the synchronized prismatic joints are the three revolute joints of the gripper. In order to model the
interpolation of the synchronized joints, similar to Sawyer robot solution, we add three additional
synchronized position servo joints. The three synchronized revolute joints are initially frozen with
a range of 0, and their range gradually increases until the same full range of the Jaco gripper. The
evolution process for Jaco robot is illustrated in Figure 1.

As mentioned in the main paper, our evolution solution includes the changing of D independent
robot parameters whereD = 40 for Sawyer robot andD = 42 for Jaco robot. We illustrate the robot
parameters in Tables 1 and 2. The changing robot parameters include body shapes and mass, and
joint ranges and damping etc. The ranges of all changes in robot parameters are linearly normalized
to [0, 1] so that we can map the evolution progress of robot parameters to [0, 1]D.

3



Figure 4: Visualization of inverse kinematics (IK). We use red spheres to show the hand 3D joint
positions estimated by the vision model [4]. The second row is the result of using IK to fit the
dexterous robot keypoints (i.e. finger tips and knuckles) to the corresponding human hand finger
joint keypoints.

C Learning Expert Dexterous Hand Robot Policy from Visual Human
Demonstrations

Obtaining an expert policy on dexterous hand robot from human demonstration is the first step of our
proposed pipeline. In Section 3.1 of the main paper, we provide a brief description of our approach.
In this section, we provide more details on the technical approach of learning expert dexterous hand
robot policy from visual human demonstration. It includes the reconstruction of simulation states
from visual inputs using vision models, and learning through generated reverse curriculum from
human demonstrations. We use DexYCB dataset [2] as an example to describe our method.

C.1 Simulation States from Visual Demonstration

Given the visual scene of human manipulation demonstration, the goal of this step is to reconstruct
the simulation environment by recovering the underlying states from visual inputs so that the dex-
terous human robot can learn the same behavior as demonstrated by the human hand. The states
include the 6D poses of the objects and the joint poses of the human hand.

Object 6D Pose We use off-the-shelf models of CozyPose [3] to estimate the object 6D poses.
CozyPose is a multi-view method for 6D object pose estimation. The object simulation states can
be easily reconstructed by placing the scanned mesh model in the estimated 6D pose.

Dexterous Robot Pose We use off-the-shelf models of HRNet32 [4] to estimate the human hand
joint poses. Due to the difference in shapes between the human hand and the dexterous robot, if
we directly set the pose of the dexterous robot to be the estimated human hand pose, there could
be an unwanted mismatch in the object grasping including penetration of object models, as pointed
out by [5]. Therefore, we use inverse kinematics (IK) to minimize the average 3D distance between
the positions of several dexterous robot joint keypoints and the corresponding human hand joint
keypoints. We use ten joint keypoints, namely the tips and knuckles of the five fingers. To prevent
the dexterous robot from penetrating the object mesh, we compute the volume of the intersection
between the robot body mesh and the object mesh, and add the negative volume to the optimization
objective of IK. We use the Powell algorithm [6] as the optimization algorithm for IK. We visualize
several results of IK in Figure 4.

C.2 Curriculum for Learning Expert Policy on Dexterous Robot

Given the reconstructed simulation environment with the state-only trajectory estimated from vision
models, our next goal is to train the expert policy on the dexterous hand robot to re-produce the
same or similar behaviors as demonstrated by the human from visual input. Though recent literature
[5, 7] have reported success on this problem, their implementations have not been released at the
time of writing. We propose our solution to this task which is based on curriculum learning and
reinforcement learning.

Our philosophy is to design a series of curricula to decompose the problem into multiple easier
problems. Since we have access to the full state trajectory in DexYCB dataset demonstrations [2],

4



Initial State Goal & Reward Demonstration Trajectory Policy Rollout

…

Curriculum 1 Curriculum 2 Curriculum 𝑁-1 

Curriculum Order 

Curriculum 𝑁 

Figure 5: Curriculum learning of expert manipulation policy on dexterous hand robot.

we are able to reset the initial states of the simulation environment to the states at any timestamp in
the demonstration trajectory.

During the first curriculum, the initial states of each simulation epoch are reset to be along the
demonstrated trajectory while being very close to the set of goal states. With exploration, the agent
can easily find trajectories of state-action pairs that lead to the goal. A policy can be trained with the
explored trajectories. Then in the next curriculum, the initial states of each simulation epoch are still
reset to be along the demonstration trajectory but move by a small distance in the reverse direction of
demonstration compared to the first curriculum. During exploration, as long as the dexterous robot
can enter the state regions explored and trained in the previous curriculum, it is easy for the trained
policy to produce a state-action trajectory leading to the goal states. Then the policy is updated
by training on the explored trajectories in the new curriculum. The above iteration of “initial state
reverse movement + policy update” is repeated multiple times until reaching the desired initial state
of the task. In this way, we will be able to decompose the difficult long-horizon continuous control
tasks such as object manipulation into multiple easy tasks and finally solve the problem. The above
learning process is illustrated in Figure 5.

Since we only use human demonstrations to reset epoch initial states, our curriculum strategy is
able to deal with the task of one-shot learning from demonstration such as the case in the DexYCB
dataset [2] where there is only one human demonstration video in each scene. We are also able to
deal with noisy demonstrations such as the case of DexYCB dataset where the object and human
states are estimated by vision models and could be noisy.

We point out that the similar idea of resetting simulation states for reverse curriculum generation
can be found in previous work [8]. Different from [8], our curricula are generated along the hu-
man demonstration trajectory. Therefore, our curriculum design is more controllable and can train
policies with behavior much closer to the human demonstration.

D Hyperparameter and Training Details

In this section, we present the hyperparameters and training procedures of our robot evolution and
policy optimization. We use PyTorch [9] as our deep learning framework and NPG [10] as the RL
algorithm in all experiments. To fairly compare against REvolveR [11], we use the same evolution
progression step size ξ as [11] in the experiments. Since we use sparse reward setting in all experi-
ments, in practice we use threshold in success rate q instead of episode reward in line 5 of Algorithm
1 of the main paper. The hyperparameters are illustrated in Table 3.

E More Discussions

Evolution Path being Optimal? We point out that the proposed DEPS algorithm for joint opti-
mization of robot evolution path and policy does not guarantee to find the optimal robot evolution
path. In fact, finding such an optimal path is an NP-complete problem, similar to the ordinary path
planning problem. However, we argue that our algorithm does provide a working solution that al-
lows us to find an optimized and efficient robot evolution path for transferring the policy than naı̈ve
linear evolution path, as shown by the reported experiment results.

Relation to Neural Architecture Search Our problem is closely related to the problem of Neural
Architecture Search (NAS) [12, 13, 14] where we can view the intermediate robot in our problem as

5



Hyperparameter Value
RL Discount Factor γ 0.995
GAE 0.97
NPG Step Size 0.0001
Policy Network Hidden Layer Sizes (32,32)
Value Network Hidden Layer Sizes (32,32)
Simulation Epoch Trajectory Length 200
RL Traning Batch Size 12
Evolution Progression Step Size ξ 0.03
Number of Sampled δi for Jacobian Estimation n 72
Evolution Direction Weight Factor λ 1.0
Sample Range Shrink Ratio λ1 0.995
Success Rate Threshold q 0.667

Table 3: The value of hyperparametrs used in our experiments.

the neural network architecture in NAS. Similar to NAS where the goal is to optimize both network
architecture and network weights, the goal of our problem is also to optimize both the robot and the
policy. However, our problem is different from NAS in that our problem is much noisier than NAS,
where the converged neural network performance in NAS usually has a noise of 1-2% while the
policy reward rollouts in our problem can have a noise up to 90% depending on the reward design.
Therefore, solutions that use Bayesian Optimization for NAS such as [14] will not be able to work
in our problem. In fact, our proposed DEPS algorithm is closer to differentiable neural architecture
search [13].

References

[1] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012.

[2] Y.-W. Chao, W. Yang, Y. Xiang, P. Molchanov, A. Handa, J. Tremblay, Y. S. Narang, K. Van
Wyk, U. Iqbal, S. Birchfield, J. Kautz, and D. Fox. DexYCB: A benchmark for capturing hand
grasping of objects. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[3] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view multi-object
6d pose estimation. In European Conference on Computer Vision, pages 574–591. Springer,
2020.

[4] A. Spurr, U. Iqbal, P. Molchanov, O. Hilliges, and J. Kautz. Weakly supervised 3d hand pose
estimation via biomechanical constraints. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pages 211–228.
Springer, 2020.

[5] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning
for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877, 2021.

[6] M. J. Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155–162, 1964.

[7] Y.-H. Wu, J. Wang, and X. Wang. Learning generalizable dexterous manipulation from human
grasp affordance. arXiv preprint arXiv:2204.02320, 2022.

[8] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation
for reinforcement learning. In Conference on robot learning, pages 482–495. PMLR, 2017.

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

6



[10] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. Towards generalization and simplicity
in continuous control. arXiv preprint arXiv:1703.02660, 2017.

[11] X. Liu, D. Pathak, and K. M. Kitani. Revolver: Continuous evolutionary models for robot-to-
robot policy transfer. arXiv preprint arXiv:2202.05244, 2022.

[12] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive neural architecture search. In Proceedings of the European conference
on computer vision (ECCV), pages 19–34, 2018.

[13] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[14] S. Cao, X. Wang, and K. M. Kitani. Learnable embedding space for efficient neural architecture
compression. In International Conference on Learning Representations, 2018.

7


	Overview
	Details on Hand-to-Robot Continuous Evolution
	Learning Expert Dexterous Hand Robot Policy from Visual Human Demonstrations
	Simulation States from Visual Demonstration
	Curriculum for Learning Expert Policy on Dexterous Robot

	Hyperparameter and Training Details
	More Discussions

