BusyBot: Learning to Interact, Reason, and Plan in a
BusyBoard Environment
(Supplementary Material)

1 Implementation Details

1.1 Interaction module.

Training detail. The interaction module is trained online in a self-supervised manner for 400 epochs.
Each epoch contains a data collection phase and a training phase. During the data collection phase,
16 busyboard environments are generated and the agent executes 10 actions on each board. Each
interaction data point is stored in a FIFO replay buffer (size=6400) as {o;,a**,a¥", r(a%")}. During
the training phase, in each iteration, we sample 16 and 32 interaction data points from the replay
buffer for training position and direction inference network respectively. When sampling the data
points, we make sure that half of the sampled data points have positive reward and half of them have
zero reward. We train 8 iterations for the position network and 24 iterations for the direction network
in each epoch.

Given the model structure, an effective direction depends on an effective position to gain the positive
reward, thus to make the training more efficient, we only train the position inference network (with
an initial learning rate of 0.0005 and Adam optimizer) and try all direction candidates in the first
100 epochs. If one of the direction candidates yields positive reward, the position network gains
positive reward. To bootstrap the training, in the first 10 epochs, data are collected by a policy that
chooses random positions and the training starts at the 10th epoch. From the 100th to 120th epoch,
we randomly select direction candidates to collect negative data points. Starting from the 120th
epoch, we jointly train the position and direction inference network (with an initial learning rate of
0.0001 and Adam optimizer). To encourage exploration, we apply the epsilon-greedy exploration
algorithm with ¢ starting from 1 and decreasing linearly to a minimum value of 0.1 over a span of
40 epochs and 80 epochs, from the epochs when the training starts for the position and direction
inference network respectively.

Network detail. The structure of the position inference network and direction inference network
are discussed below:

Given a depth observation captured by a depth camera, we first calculate the world coordinates
for each pixel using depth values. Surface normals are then estimated using the cross product of
neighboring coordinates. Next, the depth image and surface normals are concatenated (4 x 480 x 640)
and fed into the position inference network with a U-Net architecture. The position network has 4
down-sample blocks with 32, 64, 128, and 256 channels, followed by 4 up-sample blocks with 128,
64, 32, and 2 channels. Each down-sample (or up-sample) block includes a max-pooling (or bilinear
interpolation) layer and two 3 x 3 convolution layers with ReLLU activation. The output tensor has
a size of 2 x 480 x 640 and softmax activation is applied to obtain the final affordance score map
(1 x 480 x 640).

The direction network takes in the current depth observation, surface normals, and the 2-D Gaussian
representation of the selected position (5 x 480 x 640) and applies seven 3 x 3 convolution layers
with 32, 64, 128, 256, 512, 512, and 512 channels. Max pooling is also applied except for the first
layer. The output tensor with a size of 512 x 7 x 10 is flattened as an embedding x (o) and passed
through a two-layer MLP with both 256 dimensions, followed by a four-layer MLP with dimensions
of 1024, 1024, 1024, and 18. Finally, the network outputs the scores for all direction candidates
(1 x18).

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

1.2 Reasoning module.

Network details. The graph neural networks used in the reasoning module has a similar structure as
the Interaction Network (IN) [1]. The frist GNN is a spatial encoder that takes in node n;(T x N x 259)
and edge features {n;,n;}(T x N x N x 259), where T is the number of frames, N is the number of
objects, and the 259-dimensional node feature is the concatenation of the object’s 256-dimensional
visual feature (extracted from the 10th layer of a pre-trained ResNet-50 network) and its 3D position.
The input vectors are flattened and input to a sequence of linear layers followed by ReLU activation
to encode (1 layer), propagate (4 layers for edges and 2 layers for nodes, in each propagation step),
and decode (2 layers) the information. The objective is to learn /" and f°%/ that maps the input
features to node and edge embeddings,

hij:frel(nivnj?{edvehD (D

hi = [(ni, Zjen;hij) 2)
where N; denotes all objects that are directly connected by an edge to object i, 4; and h;; are the
learned spatial node (T x N x 128) and edge embeddings (T x N x N x 128).

The other GNNs use the same structure as above to pass information through nodes and edges.

Training details. The total number of nodes N in the GNNs is set to 10, the maximum possible
number of objects over all busyboards. For boards with less than 10 objects, we input 0’s as
placeholders for vacant nodes. In this way, the model is able to generalize to boards with different
number of objects. In addition, since the model does not rely on the states of the triggers to make
predictions, we find that the training can be more stable if we input 0’s in place of visual features for
trigger objects.

The action is encoded to a 256-dimensional embedding by a 3-layer MLP with 256, 256, 256
dimensions. For the object where the action is applied on, the input is the 6-D action; for other
objects, the input are 0’s.

We jointly train the relation inference and dynamics network for 200 epochs with a learning rate
of 0.0005 and a batch size of 64, using the Adam optimizer. During training, we clip out sudden
explosion in loss to obtain more stable training.

1.3 Planning module.

The relation agent compares the initial and goal image and identifies the different responders. For
each responder that needs to be changed, the agent retrieves the corresponding trigger based on
the functional scene graph (if multiple triggers are found, the agent randomly chooses one) and
applies the action. Therefore, the total steps executed by the relation agent is the number of different
responders in the initial and goal image and the relation agent will terminate regardless of whether
the goal state is reached. The predictive agent and the BusyBot agent will terminate after executing 8
steps, or terminate immediately if the goal state is reached within 8 steps.

As for the learning-based agents (BC and PPO), at each step, both agents take the current observation
o, the goal state observation o, the action candidates A;, and the interaction history H; as input, and
infers a discrete action index for execution. For fair comparison, we make both the observations
(top-down RGB images) and action candidates (inferred by the interaction module) the same as in
our method. In addition, we encode the interaction history H; = [(09,4d,), (01,a1) -+, (01—1,a:-1)]
via a LSTM as an implicit scene representation for each step. The objective of PPO is to optimize the
cumulative reward (i.e., success rate) and the objective for BC is to mimic the behavior of an expert
agent (generated using an oracle policy).

2 Environment Details

Board Generation. The main body of the board will be assigned random colors (from 8 colors)
and textures (from 5 textures) upon generation to introduce variety. Objects are placed into random
positions on the board with no overlap.

Objects from the lamp and door category may rotate 6, = {0, 7, , %77:}, where 6, denotes rotation (in
radian) along the z-axis counter-clockwise. The orientation of objects from the switch and tracktoy

category are fixed in order to eliminate possible ambiguities. The joint states of the triggers are also
randomly set upon board generation to add variance to initial board observations.

Relation Assignment. Switch objects are classified into small-displacement, multi-direction, and
multi-link triggers. Door objects are single-stage motion effects. Tracktoy objects are multi-stage
motion effects. Lamp objects can be either single-stage or multi-stage appearance effects. When
sampling the relation, we make sure that each trigger object is matched with at least one responder.

3 Result Details

Figure 1 and 2 shows the step-by-step reasoning result on simulated and real-world busyboards. We
highlight the object that the agent interacts with in each step using the yellow symbol. We can observe
that the edge predictions associated with each object refine through interactions.

Figure 3 shows the step-by-step goal-conditioned planning results on boards with novel configurations.
All agents perform well on one-to-one tasks, while the predictive agent and BusyBot agent outperform
the relation agent on one-to-many tasks by leveraging future predictions to select the correct link or
correct direction.

Figure 4 shows step-by-step goal-conditioned planning result on boards with novel objects. One-
to-one (a) shows a case when all agents perform well, demonstrating that the learned relation and
dynamics can generalize to boards with unseen object instances. One-to-one (b) shows a case when
incorrect future predictions lead to a repeating action (the agent turns on and off the green light),
while the relation agent and BusyBot agent are able to retrieve the correct trigger to manipulate using
the functional scene graph.

The one-to-many task on boards with novel objects is challenging for both relation and predictive
agent, given that the relation agent cannot infer the exact action position or direction, and the
predictive agent might not be able to select the correct action either as the future state prediction
accuracy is low on novel objects. By combining the advantages of both agent, the BusyBot agent
may yield the correct result by narrowing down possible action candidates using the functional scene
graph and leveraging future predictions of the dynamics network to choose the correct action.

References

[1] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. Advances in neural information processing systems, 29,
2016.

Novel Object

one

one-to

one-to-many

-to-many

one

Novel Config

one-to-one

s
.g
=

g gy iy g gy iy g g gy g Ry gy gy g ——

Obs&Action Prediction

Steps Obs&Action Prediction

22

23

24

lated busyboards.

ing sequences on simu

Figure 1: Full reason

one-to-many

one-to-one

one-to-one

Ground
Truth

Prediction

Obs&Action

Prediction

Obs&Action

:

Prediction

Steps Obs&Action

Figure 2: Full reasoning sequences on real-world busyboard.

One-to-One One-to-Many (a) One-to-Many (b)
Affordance Scene Graph Goal . Affordance Scene Graph Goal Affordance Scene Graph ~ Goal

’ wl, n E : g 7 R L]
\}/ , |% A i B I : ! - y
Steps Relation Predictive BusyBot i Relation Predictive BusyBot | Relation Predictive BusyBot

~k B 1 R ~k R
-

Init w.’!-;{‘ K"e;—é "'[:
b '%jﬂ L2 'Wi lfs 13]

) (L JEE | |
ey el """g."qg |
A VY W | g

L A L |

2 - © -, © }l © |
22 ;
Wt

3 o le, B g !
A Vay WAk |

4 g

;

%4 Pushing down (@ Pullingup - Pushingright Pushlng left i_i Obj not in target state

Figure 3: Goal-conditioned planning result on boards with novel configurations.

One-to-One (a) One-to-One (b) One-to-Many
Affordance

Affordance Scene Graph ~ Goal Affordance Scene Graph Goal

Scene Graph Goal

Relation Predictive BusyBot

Relation Predictive

Relation

=
9

% Pushing down (©) Pullingup - Pushingright . Pushing left i Obj notin target state

Figure 4: Goal-conditioned planning result on boards with novel objects.

	Implementation Details
	Interaction module.
	Reasoning module.
	Planning module.

	Environment Details
	Result Details

