
Frame Mining: a Free Lunch for Learning Robotic
Manipulation from 3D Point Clouds

Supplementary Material

S.1 Architecture of the other two FrameMiners1

Figure S1 shows architectures of the other two FrameMiners, FrameMiner-FeatureConcat (FM-FC)2

and FrameMiner-TransformerGroup (FM-TG).3

PC in 
Frame 1

PointNet 1

PC in 
Frame 2

PointNet 2

Concat & MLP

Robot Action
(m)

PC in 
Frame n

PointNet n

Proprioceptive
Robot State

Frame 1 Frame 2 Frame n

Transformation

(Fused) Point 
C

loud

…
…

…
…

(a) FrameMiner-FeatureConcat

PC in 
Base Frame 

PointNet
for Base Frame

MLP
for Base Joints

Actions
for Base Joints

Concat

PC in LH 
Frame

PointNet
for LHand Frame

MLP
for LHand Joints

Actions
for LHand Joints

PC in RH 
Frame

PointNet
for RHand Frame

MLP
for RHand Joints

Actions
for RHand Joints

Robot Action
(m)

Proprioceptive
Robot State

Robot-Base 
Frame

Left-Hand
Frame

Right-Hand
Frame

Transformation

(Fused) Point 
C

loud

Transformer Encoder

(b) FrameMiner-TransformerGroup

Figure S1: Architectures of FrameMiner-FeatureConcat and FrameMiner-TransformerGroup.

S.2 Additional Experiment Results and Discussions4

S.2.1 Imitation Learning5

In the main text, we analyzed the profound impact of coordinate frames on point cloud-based object6

manipulation learning through online RL algorithms. Apart from online RL, some previous work [1]7

have shown that dynamic selection of coordinate frames could benefit demonstration-based manipu-8

lation learning as well. In this section, we conduct experiments on imitation learning and investigate9

whether our previous findings can generalize to other algorithm domains.10

For each task, we use an expert RL policy to generate 100 successful demonstrations. We then per-11

form Behavior Cloning (BC) by representing input point clouds under different coordinate frames,12

along with using our proposed FrameMiner-MixAction (FM-MA). We utilize the same network ar-13

chitectures as online RL, and we use MSE loss for training. For FM-MA, the robot-base frame and14

the end-effector frame(s) are fused. As shown in Table S1, we observe similar findings to Section15

3 and Section 4. Specifically, the end-effector frame has much higher performance on single-arm16

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.



Robot-Base End-Effector FM-MA

OpenCabinetDoor 50±3 85±3 83±4
OpenCabinetDrawer 72±4 88±2 88±2

PushChair 38±3 28±2 42±4
MoveBucket 76±4 80±2 91±2

Table S1: Behavior Cloning (BC) success rates (%) on four ManiSkill tasks. Mean and standard
deviation over 5 seeds are shown.

0 5 10 15
Environment Steps (x1e6)

1000

800

600

400
R

et
ur

n

MoveBucket
FM-MA-WLC
FM-MA-MW

Figure S2: Comparison between FM-MA-WLC and FM-MA-MW on MoveBucket. Mean and
standard deviation over 5 seeds are shown. FM-MA-WLC achieves 81±3% final success rate, while
FM-MA-MW only has 9±2% final success rate.

tasks (OpenCabinetDoor/Drawer), demonstrating the benefits of end-effector alignment. Our pro-17

posed FrameMiner is capable of automatically selecting the best single frame or combining the18

merits from multiple frames and outperforming single-frame baselines.19

S.2.2 Alternative Designs in FM-MA (Weighted Linear Combination vs. Maximum Weight)20

In the main paper, FrameMiner-MixAction (FM-MA) uses weighted linear combination to fuse21

action proposals from each coordinate frame (see Figure 8). For simplicity, we name this variant FM-22

MA-WLC. An alternative design is to choose the max-weighted action proposal for each joint (we23

name this variant FM-MA-MW). Formally, let A ∈ Rn×m, where Aij denotes the action proposal24

for the j-th robot joint from the i-th coordinate frame. Let W ∈ Rn×m be the weight matrix25

predicted by the network. In FM-MA-MW, the output action a = (a1, a2, . . . , am) satisfies aj =26

Akj where k = argmaxn
k=1Wkj . Note that FM-MA-WLC uses SoftMax to normalize the weights;27

thus FM-MA-WLC can be regarded as a “soft version” of FM-MA-MW.28

To compare the two designs, we conduct two experiments: (1) We train FM-MA-MW from scratch.29

Results are shown in Figure S2. (2) We resume from the final checkpoint of the original FM-MA-30

WLC. During evaluation, we use the max-weighted action proposal as the action output. Results31

are shown in Table S2. We observe that for both experiments, using FM-MA-MW deteriorates per-32

formance. We conjecture that FM-MA-WLC alleviates optimization difficulty, which likely comes33

from the fact that it is a “soft version” of FM-MA-MW with well-behaving gradients. On the other34

hand, since FM-MA-MW uses argmax operation over columns of W , there is a lack of gradient for35

W during training, which leads to more difficult optimization.36

S.2.3 Ablation Study on Camera Placements37

As a recap, the five tasks analyzed in our main paper cover both static and moving camera settings.38

The experiments in the main paper were conducted using default camera placements shown in Figure39

2. For the four tasks with moving cameras, a panoramic camera is mounted on the robot head.40

While FrameMiners do not require changing existing camera placements, camera placements could41

still matter, since different camera placements affect the point clouds being captured (due to dif-42

ferent occlusion and sparsity patterns). Therefore, we perform an experiment where we move the43

2



FM-MA (WLC eval) FM-MA (MW eval)

OpenCabinetDoor 84±2 45±5
OpenCabinetDrawer 93±1 93±2

PushChair 36±4 20±3
MoveBucket 81±3 14±3

Table S2: Success rate (%) comparison between the same FM-MA checkpoint evaluated using
weighted linear combination of actions (WLC) and using maximum-weighted action (MW) on four
ManiSkill tasks. Mean and standard deviation over 5 seeds are shown.

0 5 10 15
Environment Steps (x1e6)

1000

800

600

400
R

et
ur

n
MoveBucket

Robot-Base Frame
End-Effector Frame
FM-MA

Figure S3: Results on MoveBucket with a panoramic camera mounted on the robot base. The
“Robot-Base Frame” and the “End-Effector Frame” indicate the coordinate frames used to represent
captured input point clouds. FM-MA fuses the two end-effector frames (left and right arms) and the
robot-base frame. Mean and standard deviation over 5 seeds are shown.

panoramic camera from the robot head to the robot base. As shown in Figure S3, we observe similar44

phenomena as in Figure 10. Specifically, fusing multiple coordinate frames with our FrameMiners45

still leads to better sample efficiency and final performance, demonstrating that FrameMiners are46

robust under different camera placements.47

S.2.4 Learning Adaptive Frame Transformations from Observations48

In our paper, we use known transformations (e.g., end-effector pose in robot state) to align input49

point clouds in different coordinate frames and propose FrameMiners to fuse merits of multiple co-50

ordinate frames. A potential baseline is to learn a transformation adaptively based on input point51

clouds. To examine the effectiveness of this baseline, we add an additional network before the52

PointNet backbone to learn an adaptive SE(3) transformation based on the input point cloud. This53

transformation is then applied to the input point cloud before passing it through the PointNet back-54

bone (note that we remove spatial transformation layers from the original PointNet in all of our55

experiments). However, as shown in Figure S4, adding this SE(3) transformation layer barely im-56

proves performance.57

We conjecture that it’s very difficult to predict a SE(3) transformation for aligning the input point58

cloud across time due to the large search space (where most transformations are ineffective) and59

weak supervision from RL training loss. Moreover, in many challenging tasks, we may need to fuse60

information simultaneously from multiple coordinate frames (e.g., left-hand and right-hand frames).61

This is not achievable through learning a single transformation. In contrast, for FrameMiners, we62

take advantage of easily-accessible frame information (e.g. end-effector poses) without relying on63

transformation prediction. We then fuse the merits of multiple candidate coordinate frames.64

S.2.5 SO(3) and SE(3) Equivariant Point Cloud Backbones65

Recently, there have been several works on designing SO(3) and SE(3) equivariant/invariant back-66

bone networks for point cloud learning [2, 3]. While they are of great benefit for analysis within67

each object (e.g., shape classification, part segmentation, and 6D pose estimation), our robot-object68

interaction setting is a bit different.69

3



0 5 10 15
Environment Steps (x1e6)

0

100

200

R
et

ur
n

OpenCabinetDoor
Robot-Base Frame
Robot-Base Frame + SE(3)
End-Effector Frame

Figure S4: Ablation study on adding an adaptive SE(3) transformation prediction layer. When the
input point cloud is represented in the robot-base frame, adding such transformation layer barely
improves performance, while representing the point cloud in the end-effector frame significantly
improves performance.

In robot manipulation scenarios, a particular challenge comes from inferring the relations between70

two object parts (e.g., relative pose between the end-effector and the cabinet handle). This binary71

relation inference task is challenging under the weak RL loss supervision, even using SO(3) and72

SE(3) equivariant/invariant backbones. FrameMiners explicitly approach this challenge by aligning73

point clouds (across multiple time steps) with the known transformation matrices (e.g., the end-74

effector pose). This reduces many binary relation inference tasks to single-subject location tasks,75

which has much lower difficulty. For example, when using the end-effector frame in the OpenCabi-76

net task, the network only needs to copy the handle pose to infer the relative pose between the handle77

and the end-effector, as the end-effector is always at the frame origin.78

S.3 More Details of Manipulation Tasks79

Task Descriptions:80

• In OpenCabinetDoor, a single-arm mobile agent needs to approach a cabinet, use the handle to81

fully open the designated cabinet door, and then keep the door static for a while.82

• In OpenCabinetDrawer, a single-arm mobile agent needs to approach a cabinet, use the handle to83

fully open the designated cabinet drawer, and then keep the drawer static for a while.84

• In PushChair, a dual-arm mobile agent needs to approach the chair, push the chair to a target85

location, and then keep the chair static for a while.86

• In MoveBucket, a dual-arm mobile agent needs to approach the bucket, move the bucket to a87

target platform, place the bucket onto the platform, and then keep the bucket static for a while.88

• In PickObject, a single-arm fixed-base agent needs to grasp an object from the table, lift it up to a89

certain target height, and keep it static for a while.90

Simulations are fully physical. For OpenCabinetDoor, OpenCabinetDrawer, PushChair, and Move-91

Bucket, there are 66, 49, 26, and 29 different objects (designated parts) during training, respectively.92

Observations and Actions:93

For all ManiSkill tasks, the proprioceptive robot state includes:94

• Positions of all (two if single-arm, four if dual-arm) fingers95

• Velocities of all (two or four) fingers96

• x, y position of the mobile robot base97

• Mobile robot base’s rotation around the z-axis98

• x, y velocity of the mobile robot base99

• Angular velocity of the mobile robot base around the z-axis100

• Joint angles of the robot, excluding the joints in the mobile base101

• Joint velocities of the robot, excluding the joints in the mobile base102

4



• Indicator of whether each joint receives an external torque103

The action space includes:104

• x, y velocity of the mobile robot base105

• Angular velocity of the mobile robot base around the z-axis106

• Height of the robot body107

• Joint velocities of the robot, excluding joints of the mobile base and the gripper fingers108

• Joint positions of the gripper fingers109

Joint positions of the gripper fingers are controlled by position PID. All other action components are110

controlled by velocity PID.111

For the PickObject task, the proprioceptive robot state includes:112

• Joint angles of the robot,113

• Joint velocities of the robot,114

• 1D gripper joint position,115

• Target xyz positions of object.116

The action space includes 3 DoF end-effector position and 1 DoF gripper joint position.117

For all tasks, input point cloud features include xyz coordinates, RGB colors, and one-hot segmen-118

tation masks for each part category.119

Motivations for Our Task Choice120

We aim to cover a wide range of factors that may influence the selection of point cloud coordinate121

frames. Specifically, the tasks are chosen to cover various robot mobilities, numbers of robot arms,122

and camera settings, as demonstrated in Figure 1.123

Different robot mobility results in differences in world frame and robot base frame. These two124

frames are aligned in static robots but not in mobile robots. The robot’s mobility can also change125

the focus of tasks (e.g., navigation or object interaction), which may place different requirements on126

the choice of point cloud frame.127

We cover both single-arm and dual-arm environments, as they pose different requirements for point128

cloud frame selection. In single-arm environments, using the only end-effector frame may already be129

able to achieve good performance. However, in dual-arm environments, there are two end-effector130

frames, and these tasks require precise coordination between the two robot arms, which pose sig-131

nificant challenges for manipulation learning. As each end-effector may have a preferred frame, the132

necessity of frame fusion becomes more pronounced.133

Last but not least, camera placements determine sources of point clouds, which may potentially134

influence the selection of coordinate frames. In our experiments, we cover both static camera settings135

and moving camera settings (mounted on robots).136

S.4 Detailed Experimental Settings and Hyperparameters137

For our visual backbones, our PointNets are implemented with a three-layer MLP with dimensions138

[64, 128, 300] followed by a max-pooling layer. We do not apply any spatial transformation to139

the inputs. Our SparseConvNets are implemented as a SparseResNet10 using TorchSparse [4].140

SparseResNet10 has a 4-stage pipeline with kernel size 3 and hidden channels [64, 128, 256, 512]141

respectively. We use kernel size 3 and stride 2 for downsampling. Initial voxel size is 0.05. Final142

features in the final-stage voxels are maxpooled as output visual feature.143

All of our agents are trained with PPO (hyperparameters in Table S3). Each policy MLP that outputs144

actions has dimensions [192, 128, action dim]. For FM-MA that uses input-dependent joint-specific145

weights to fuse action proposals from different frames, the MLP has dimension [192, n×m], where146

n is the number of frames and m is the dimension of action space. For FM-TG that uses Transformer147

to fuse features from different frames, the Transformer has 3 layers with hidden dimension 300 and148

feed-forward dimension 1024. For all network variants, the value head takes the concatenation of all149

5



Si
m

ul
at

io
n

R
ea

l W
or

ld

RGB image 3D Point Cloud

Figure S5: RGB images and 3D point clouds captured in both simulation and the real world. Colored
point clouds for better illustration.

Hyperparameters Value

Optimizer Adam
Discount (γ) 0.95
λ in GAE 0.95

PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent 0.0

Advantage normalization True
Reward normalization True

Number of threads for collecting samples 5
Number of samples per PPO update 40000
Number of epochs per PPO update 2
Number of samples per minibatch 330

Gradient norm clipping 0.5
Max KL 0.2

Policy learning rate 3e-4 (non FM-TG); 1e-4 (FM-TG)
Value learning rate 3e-4

Action MLP Last Layer Initialization Zero-init

Table S3: Hyperparameters for PPO.

visual features from all frames as input and passes through an MLP with dimensions [192, 128, 1] to150

output value prediction.151

In addition, we found that zero-initializing the last layer of MLP before action output along with the152

joint-specific weights in FM-MA to be very helpful for stabilizing agent training.153

For each task, we train an agent for a fixed number of environment steps. Specifically, for OpenCab-154

inetDoor, OpenCabinetDrawer, and MoveBucket, we train for 15 million steps. For PushChair, we155

train for 20 million steps. For PickObject, we train for 4 million steps. Success rates are calculated156

among 300 evaluation trajectories.157

S.5 More Details of Real-World Experiments158

Figure S5 shows the captured RGB images and point clouds in both simulation and the real world159

(by RealSense camera). For both simulation and the real-world environment, the ground points are160

removed using z-coordinate threshold or RANSAC, and the distant points are clipped. To reduce the161

sim-to-real gap, we only use xyz coordinates as our input point cloud feature, and we discard RGB162

colors.163

References164

[1] B. Wen, W. Lian, K. Bekris, and S. Schaal. You only demonstrate once: Category-level ma-165

nipulation from single visual demonstration. In Proceedings of Robotics: Science and Systems,166

2022.167

6



[2] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-168

rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF169

International Conference on Computer Vision, pages 12200–12209, 2021.170

[3] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-171

mann. Neural descriptor fields: Se(3)-equivariant object representations for manipulation. 2022.172

[4] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han. Searching efficient 3d archi-173

tectures with sparse point-voxel convolution. In European Conference on Computer Vision,174

2020.175

7


	Architecture of the other two FrameMiners
	Additional Experiment Results and Discussions
	Imitation Learning
	Alternative Designs in FM-MA (Weighted Linear Combination vs. Maximum Weight)
	Ablation Study on Camera Placements
	Learning Adaptive Frame Transformations from Observations
	SO(3) and SE(3) Equivariant Point Cloud Backbones

	More Details of Manipulation Tasks
	Detailed Experimental Settings and Hyperparameters
	More Details of Real-World Experiments

