Supplementary Material

1 Network Details

In this section, we give more details on the proposed scale balanced grasp detection approach.

1.1 Transformer-based Point Encoder

For the point-cloud encoder, we build a transformer-based architecture modified from [1] to model
global relationship among points. Specifically, [1] proposes a set operator, namely point transformer
layer, to capture the relationship between a point and its neighbors, described in Equation (1):
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where 7, ¢, 1, & are MLPs for feature transformation and § is a position encoding. X (7) is the set
of neighboring points of ;.

Considering the trade-off between the encoder performance and computational complexity, we add
point transformer layers to a two-layer PointNet++ network [2], as shown in Figure 1.
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Figure 1: Architecture of the point encoder.

The initial point-cloud is sampled and grouped by the set abstraction layer [2] and the point trans-
former layer is employed to encode long-range dependencies for points and its neighbors.

1.2 Instance Segmentation Network

For the instance segmentation network adopted in Object Balanced Sampling (OBS), inspired by
[3], we construct an architecture to deal with point-clouds rather than images, where the point en-
coder introduced in Sec 1.1 is used as the backbone. A decoder is added with two heads to predict
foreground masks and object center offsets, on which we apply the mean-shift clustering algorithm
to obtain object mask prediction. The whole process is shown in Figure 2. Only the deep seeding
network is used for training and inference in our experiments and if RGB information is available,
the region refinement network can be further integrated for better segmentation results.
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Figure 2: Framework of instance segmentation.

1.3 Loss Functions

Following [4], the loss of our network is composed of an approach term and a rotation term. The
approach term is:
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where ¢; is the graspable prediction result, s;; is the j-th view confidence for point 7 and v;; is the
view direction. The rotation term is:
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where R;;,.S;;, Wij denote the rotation degrees, grasp confidence scores and gripper widths respec-
tively. d is the depth of the approaching direction.

2 Implementation Details

The raw point-cloud is sampled to 20,000 points as input. After the point encoder, we sample
1,024 candidates with 256-dimensional features. For the loss in the approach head, we discrete
the approach direction to 300 views and employ the L1 loss to regress the view score. The cross-
entropy loss is used for graspable discovery. In MsCG, we set up four cylinders with radii » =
0.02m, 0.04m, 0.06m, 0.08m. 64 points are sampled from each cylinder and encoded to a 256-
dimensional feature. For the loss in the operation head, we divide the plane rotation to 12 bins and
use the cross-entropy loss for classification. For the width and grasp score, we predict them during
regression with the L1 loss. The trade-off hyper-parameter « for the operation loss is set to 0.2. In
SBL, we divide the max width of the gripper into 7" = 32 bins.

3 Visualization of Grasps

Some results of the scale balanced grasp detection approach are visualized in Figure 3. The top-50
ranked grasps of each scene are displayed, where successful grasps are shown in red while grasps
which collide with the scene or do not satisfy the force closure condition are shown in purple and
blue respectively.
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Figure 3: Grasp visualization on seen, similar and novel scenes.

4 More Experiments

4.1 Small-scale Grasp in terms of Threshold

To describe the grasp scale in convenience, we divide the max width of the gripper to three equal sec-
tions to denote small-, medium- and large-scale grasps respectively. Here, we test different thresh-
olds for small-scale grasps, and besides the original threshold at 4cm, a smaller one (3cm) and a
larger one (5cm) are additionally considered. The results are shown in Table 1. From the table,
we can see that when the threshold varies, the proposed approach consistently delivers performance
gains on the baseline.

Model APOcm—Scm APOcm—4cm APOcm—5cm

Seen Similar Novel | Seen Similar Novel | Seen Similar Novel
Baseline 3.06 0.38 0.62 9.44 5.15 491 19.83 14.85 11.79
Ours 4.75 0.83 1.30 13.47 6.23 7.60 | 24.81 16.99 13.52
Ours (with OBS) | 7.21 1.39 1.74 18.29 10.03 9.29 | 30.00 22.38 15.83

Table 1: Results for small-scale grasps with different thresholds.

4.2

Grasp Results at Object-level

To validate the ability of the proposed approach to generate grasps for objects at different scales,
we make evaluation at object-level where we choose the top-5 ranked grasps for each object and
use the AP averaged in objects as the metric. The results are shown in Table 2, and our approach
significantly improves the grasp quality at object-level.



Model Seen Objects Similar Objects Novel Objects

AP  APys APou4 AP APps APos AP  APys APy
Baseline 37.12 4474 3036 | 32.05 39.21 2545 | 20.19 2520 1192
Ours 4090 48.75 3456 | 3584 43.16 2996 | 23.07 28.74 14.45
Ours (with OBS) | 42.84 51.04 36.18 | 37.64 4534 3146 | 24776 30.73 1552

Table 2: Grasp results at object-level.

4.3 Comparison between NcM and Fine-tuning

The proposed NcM module is a one-phase method to address the Sim2Real gap. Compared to
NcM, a straightforward counterpart to mitigate this gap is to conduct a two-phase procedure, i.e.
Clean-Train and Noisy-Finetune (CTNF), where the model is firstly trained on synthetic data and
then fine-tuned on raw data. Although effective, CTNF incurs additional problems for expected
results, including specifically designing the training strategy (e.g. freezing some layers or training
different parts of the network with individual learning rates) and carefully setting the relevant hyper-
parameters (e.g. training iterations and learning rate). In contrary, NcM aims to bridge the domain
gap by generating more data which mix synthetic and raw scenes into single samples at instance-
level so that the trained model can directly work without fine-tuning.

We give a comparison between NcM and CTNEFE. In CTNF, we train our model using synthetic data
for 18 epochs (the same as in NcM) and finetune it using raw data for another 12 epochs, with good
convergences achieved at both phases. During fine-tuning, all the layers of the model are adjusted
by a small learning rate (1/10 to that used in training). The results are shown below.

Model Seen Similar Novel

APS AP]\/[ APL Mean APS AP]\/[ APL Mean APS AP]M APL Mean
Noisy-Train 12.69  46.25 61.78 40.24 6.00 36.88 52.55 31.81 7.06 16.38 23.27 15.57
NcM 13.47 48.12 61.81 41.13 6.23 37.90 53.89 32.67 7.60 17.04 23.10 1591
CTNF 14.87 44.75 61.60 40.41 6.66 36.99 53.60 32.42 7.75 16.95 23.44 16.05

Table 3: Comparison between NcM and CTNFE.

In the experiments, we can see that NcM works comparably with CTNF (performs better on the
whole) but in a more efficient manner. The inferiority of CTNF is mainly caused by the problem of
catastrophic forgetting due to the large gap between the two domains.

4.4 Mix Ratio in NeM

We conduct an ablation study on the value of the mix ratio of NcM, where the ratio ranges from 0
to 100% clean data with a step of 25%. The results are shown below.

. . Seen Similar Novel

Mix Ratio

APS AP]W APL Mean APS AP]W APL Mean APS APJW APL Mean
0% clean (w/o NcM) 12.69 46.25 61.78 40.24 6.00 36.88 52.55 31.81 7.06 16.38 23.27 15.57
25% clean (w/ NcM) 13.53 48.45 62.23 41.40 6.95 39.72 53.81 33.49 7.90 17.35 23.27 16.17
50% clean (w/ NcM) 13.47 48.12 61.81 41.13 6.23 37.90 53.89 32.67 7.60 17.04 23.10 15.91
75% clean (w/ NcM) 12.74 47.31 61.78 40.61 5.80 37.07 54.17 32.35 7.03 17.31 23.12 15.82
100% clean (w/o NcM) 9.62 38.87 59.86 36.12 4.10 30.23 54.41 29.58 5.17 14.67 20.64 13.49

Table 4: Ablation study on the value of the mix ratio of NcM.

When the NcM module is introduced, it delivers a consistent improvement no matter what the mix
ratio is. The value of 25% clean data achieves the best performance and the performance only with
clean data (the value is set at 100%) is largely inferior to the others because of the Sim2Real gap.
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