Safe Robot Learning in Assistive Devices through
Neural Network Repair - Supplementary Materials

Keyvan Majd'f, Geoffrey Clark', Tanmay Khandait', Siyu Zhou',
Sriram Sankaranarayanan?, Georgios Fainekos®, Heni Ben Amor!

! Arizona State University, 2University of Colorado Boulder, 3 Toyota NA-R&D

Tmajd@asu.edu

A Interval Arithmetic Method

To illustrate how we generated a tight valid bound for each ReLU activation node, we used the
Interval Arithmetic method [1, 2]. Interval arithmetic is widely used in verification to find an upper
and a lower bounds over the relaxed ReLU activations given a bounded set of inputs. We used the
same approach to find the tight bounds over the ReLLU nodes assuming the weights can only perturb
inside a bounded [, error with respect to the original weights. Assume we denote each input variable
of repair layer L as ¥ ~1(i), the weight term that connect 221 (3) to 2% (j) as 6L (i5), and the bias
term of nodes 2% (j) as 0 (j). Given the bounds for the variables 6L (ij) € [Qﬁ, (i5),05(ij)] and
0L (ij) € [0 (i5),0F (i)]. the interval arithmetic gives the valid upper and lower bounds for 2 (5)
as

#) = Y (B5(i) max(0, 021 (0)) + 04 67) min(0,22 1)) + B (i), and

2" () = 3 (0467 max(0, 2~ (1)) + B15(i) min(0, 2"~} (1)) + 6 (i),

respectively. The bounds over the ReLU nodes in the subsequent layers = L+1, - - - IV are obtained
as

()= (;@H max(0, 0%, (i5)) + z'~! min(0, eﬁu(ij))) + 6} (ij),

i

2(7) = 37 (2 max(0,64, (i) + & min(0, 64,(67))) + 64(i5).

)

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

B Soundness of NNRepLayer

Our technique only guarantees the satisfaction of constraints for the repaired samples. While we
empirically showed the generalizability of our technique, our method does not guarantee the sat-
isfaction of constraints for the unseen adversarial samples. To address this problem, we propose
Algorithm 1 that guarantees the satisfaction of constraints W for the inputs x € AX,.. In this algo-
rithm, NNReplayer is employed with a sound verifier [3, 4] in the loop such that our method first
returns the repaired network 7. Then, the verifier evaluates the network. If the algorithm termi-
nates, the network is guaranteed to be safe for all other unseen samples in the target input space X,..
Otherwise, the network is not satisfied to be safe and the verifier provides the newly found adversar-
ial samples X, for which the guarantees do no hold. In turn, NNRepLayer uses the given samples
by the verifier to repair the network. This loop terminates when the verifier confirms the satisfaction
of constraints.

Algorithm 1 NNRepLayer in a loop with a sound verifier

Inmput: 75, X, ¥
Output: 73
1: my < mg
2: while X, ¢ () do
3: my < NNREPLAYER(7), X, ¥)
4
5

X, < VERIFIER (7))
: end while

Theorem 1. Assume VERIFIER() is a sound verifier [3, 4]. If the Algorithm 1 terminates, the
predicate V is satisfied by the repaired network .

Proof. Given the sound verifier VERIFIER(), if the algorithm terminates, X,. is empty which means
VERIFIER() did not find other samples that violate . Therefore, the predicate ¥ is guaranteed to
be satisfied by 7. O

C Comparing NNRepLayer with the Other Repair Techniques

We run the repair codes from REASSURE [5] and PRDNN [6] on our problem. To ensure the
accuracy of formulated repair using the technique presented in [5], we contacted the authors. Run-
ning our control tasks on the code provided in [6] returns error. We realized the error is due to
the applicability of [6] only for the networks with one and two dimensional inputs (as the authors
also mentioned in the paper [6]). As shown in Fig. 4 (of the paper), REASSURE [5] accurately
satisfies the bounding constraint. However, it introduces controls with large magnitudes in the re-
paired regions. Fig. 6 (of the paper) shows that REASSURE [5] fails to satisfy the input-output
constraints while our method satisfies these constraints. Overall, the repair methods [5, 6] are either
infeasible to be applied to the network sizes we used, or perform poorly and cannot accommodate
the complicated constraints that we address.

Table 1 shows the detailed comparison between our technique and the other repair methods in the
literature. Table 1 and our empirical evaluations illustrate that our method is the only repair method
in the literature that can impose complicated hard constraints to the network.

Table 1: Comparing our technique with the other methods in the literature

Train SAT Guarantee Generalization Side Effect Complicated Hard Constraints Hidden Layer Repair

Fine-tune and Retrain

No No Yes No Yes
[7,8,9]
Arch. Extension [5, 6] Yes No Yes No — (functional space)
Goldberg et al. [10] Yes No Yes No No
Our method Yes No Yes Yes Yes

D Testing Repair on Larger Networks

To demonstrate the scalability of our method, we conducted a repair experiment on a network with
256 neurons in each hidden layer. We used 1000 samples for repair and 2000 samples for testing.
We formulate this problem in MIQP and run the program on a Gurobi [11] solver. We terminated
the solver after 10 hours and report the best found feasible solution. Figure 1 and Table 2 show
the control signal, and the statistical results of this experiment, respectively. As demonstrated, our
technique repaired a network with up to 256 nodes with 100% repair efficacy in 10 hours.

Table 2: Experimental results for repairing a network with 256 nodes in each hidden layer for the
input-output constraint repair, maximum ankle angle rate of 2 [rad/s]. The table reports the size
of network, the number of samples, the Mean Absolute Error (MAE) between the repaired and the
original outputs, the percentage of adversarial samples that are repaired (Repair Efficacy), and the
runtime.

Network Size Number of Samples MAE Repair Efficacy [%] Runtime [h]
Input-output Constraint 256 1000 0.62 100 10

Control bound = 2

Control [deg]

Control rate [deg/s]

Time [s]
---- Ref. —— Orig. predictions —— Rep. predictions - 32 nodes —— Rep. predictions - 256 nodes Violated region

Figure 1: Input-output constraints for networks with 32 (red) and 256 (black) nodes in each hidden
layer: Ankle angles and Ankle angle rates for bounds Aa, = 2.

E Repairing a Single Layer Partially

In this section, we provide examples for the computational speedups and heuristics that lead to faster
neural network repair by repairing randomly selected nodes of a single hidden layer in a network
with 64 hidden nodes for 35 times. We let the solver run for 30 minutes in each experiment (versus
the full repair that is solved in 6 hours).

Fig. 2 demonstrates the mean absolute error (MAE), the total number of repaired weights, repair
efficacy, and the original MIQP cost. To impose sparsity to the weight changes of the repair layer,
we solved the original full repair by adding the /; norm-bounded error of repaired weights with
respect to their original values to the MIQP cost function. The bold bars in Fig. 2 demonstrate the
results of repairing the 10 randomly-selected sparse nodes. Repairing of the obtained sparse nodes
reached a cost value very close to the cost value of the originally full repair problem (42.99 versus
40.29), in only 30 minutes versus 6 hours. As illustrated, repair of some random nodes also results
in infeasibility (blank bars) that shows these nodes cannot repair the network. In our future work,
we aim to explore the techniques such as neural network pruning [12, 13], to select and repair just
the layers and nodes that can satisfy the constraints instead of repairing a full layer. Our results in

this experiment show that repairing partial nodes can significantly decrease the computational time
of our technique.

We] (O R —— L]

l0.89 l 107

MAE
Number of
repaired weights
T
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0.5

—

1.00 PR e e 256.01

(9 (d)
0.98 4 200 4
—— 0.970
< 150
S~ 0.96 4 <
"

o 2
8 0.94 4 O 100
£ [-BEE_EN - _SSN SSEE FEEE EEE B 0.93}-—--- a
5 0.92 g
£ 0 s
53

0.90 4
o4 - +losos | o

0.88 4 ::l:::::::::::::::::::::::::::: G000 E===o[4299

5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of experiments Number of experiments
—===- The upper and lower bounds of partial repair --=-Full repair —-==- Original net

Figure 2: Partial repair versus full repair: we repaired 10 randomly selected nodes for 30 minutes in
a network with 64nodes in each hidden layer (a) mean absolute error (MAE), (b) the total number

of repaired weights, (c) repair efficacy, and (d) MIQP cost. We performed this random selections for
35 times.

References

[1] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval analysis/ramon e. Moore,
R. Baker Kearfott, Michael J. Cloud. Philadelphia, 2009.

[2] V. Tjeng, K. Y. Xiao, and R. Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In 7th International Conference on Learning Representations (ICLR),
2019.

[3] X.Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.
In International conference on computer aided verification, pages 3—29. Springer, 2017.

[4] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International conference on computer aided
verification, pages 97—-117. Springer, 2017.

[5] F. Fu and W. Li. Sound and complete neural network repair with minimality and locality
guarantees. arXiv preprint arXiv:2110.07682, 2021.

[6] M. Sotoudeh and A. V. Thakur. Provable repair of deep neural networks. In 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation,

pages 588-603, 2021.

[7] A. Sinitsin, V. Plokhotnyuk, D. Pyrkin, S. Popov, and A. Babenko. Editable neural networks.
In International Conference on Learning Representations, 2019.

[8] X. Ren, B. Yu, H. Qi, FE Juefei-Xu, Z. Li, W. Xue, L. Ma, and J. Zhao. Few-shot guided
mix for dnn repairing. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 717-721. IEEE, 2020.

[9] G.Dong,J. Sun, X. Wang, X. Wang, and T. Dai. Towards repairing neural networks correctly.
In IEEE 21st International Conference on Software Quality, Reliability and Security (QRS),
pages 714-725, 2021.

[10] B. Goldberger, G. Katz, Y. Adi, and J. Keshet. Minimal modifications of deep neural networks
using verification. In 23rd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, volume 73, pages 260-278, 2020.

[11] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://
WWW.gurobi.com.

[12] B. Hassibi, D. Stork, and G. Wolff. Optimal brain surgeon: Extensions and performance
comparisons. Advances in neural information processing systems, 6, 1993.

[13] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

https://www.gurobi.com
https://www.gurobi.com

	Interval Arithmetic Method
	Soundness of NNRepLayer
	Comparing NNRepLayer with the Other Repair Techniques
	Testing Repair on Larger Networks
	Repairing a Single Layer Partially

