
Learning Goal-Conditioned Policies Offline with
Self-Supervised Reward Shaping - Supplementary

Material

Lina Mezghani
Meta AI, Inria∗

linamezghani@fb.com

Sainbayar Sukhbaatar
Meta AI

Piotr Bojanowski
Meta AI

Alessandro Lazaric
Meta AI

Karteek Alahari
Inria∗

1 Implementation details

1.1 Self-supervised reward shaping

We provide pseudo-code for the two stages of our approach: the graph building process is shown in
Algorithm 1, and the steps for filling the replay buffer are shown in Algorithm 2. Here we use the
notation R(s,M) as the maximum RNet value between s and all nodes inM i.e.,

R(s,M) := max
m∈M

R(s,m)

Algorithm 1 Building the directed graphM
Input: pre-collected dataset D, Reachability Network R
Initialize:M = {}

/ * Build the set of nodes * /
for each state s in D do

if R(s,M) < 0.5 and R(M, s) < 0.5 then
UpdateM :=M∪ {s}

end if
end for

/ * Build edges * /
for each transition (st, st+1) in D do

Let nt := NNin(st) = argmaxn∈MR(n, st)
Let nt+1 := NNout(st+1) = argmaxn∈MR(st+1, n)
Create directed edge from nt to nt+1

end for

∗Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Algorithm 2 Building replay buffer B for offline policy training

Input: pre-collected dataset D, Reachability Network R, di-
rected graphM
Initialize: B = {}

while B is not full do
Sample a transition (st, at, st+1) at random in D
Sample a goal g at random in D

Compute dl(st+1, g) := 1−R(st+1, g)
Let nt+1 := NNout(st+1) = argmaxn∈MR(st+1, n)
Let ng := NNin(g) = argmaxn∈MR(n, g)
Compute dg(st+1, g) := ShortestPathLength(nt+1, ng)

Compute reward rt := −(dl(st+1, g) + dg(st+1, g))
Relabel transition with goal g and reward rt, and
Push (st, at, g, rt, st+1) to B

end while

1.2 Actionable Models baselines re-implementation

In this section, we provide details for our re-implementation of Actionable Models [1] and HER [2].
Since we are using the same optimization algorithm for offline policy training for these baselines
and our method, the only difference lies in how the transitions in the pre-collected dataset D are
relabeled to build the replay buffer B.

In HER [2], the idea is to sample a trajectory and a goal g at random in D, and to cut the trajectory
at a step i. Each transition in the trajectory (until step i) is then relabelled twice: once with the goal
g and reward 0 for all transitions, and once with goal si (the final state of the trajectory) and reward
0 for all transitions except the final one that gets a reward of 1. The pseudo-code for this method is
shown in Figure 1.

Actionable Models [1] relies on a similar idea as in HER [2], but contains two additional steps to
improve the method. The first step is a form of goal chaining and it consists in using the Q-value at
the final state of the trajectory to compute the reward for the final transition. The second step aims at
balancing the unseen action effect, in order to regularize the action space. In practice, it consists in
sampling negative actions from the policy and label zero-reward transitions with these actions. The
implementation of both tricks is shown in Figure 1.

For the implementation of the third baseline, HER + random negative action, the overall algorithm
is the same as HER, except that we also generate transitions with negative actions, similar to Ac-
tionable Models. This time, the negative actions are not sample from the policy, but are generated
uniformly at random from the action space.

2



Algorithm 3 HER

Input: dataset D

Initialize: B = {}

while B is not full do
Sample trajectory τ ∈ D
Sample goal g ∈ D
Randomly cut τ at step i
for j ∈ {0, ..., i− 2} do

(sj , aj , g, 0, sj+1)→ B

(sj , aj , si, 0, sj+1)→ B

end for
(si−1, ai−1, g, 0, si)→ B

(si−1, ai−1, si, 1, si)→ B

end while

Algorithm 4 Actionable Models

Input: dataset D,
goal-conditioned critic network Q,
goal-conditioned policy π
Initialize: B = {}

while B is not full do
Sample trajectory τ ∈ D
Sample goal g ∈ D
Randomly cut τ at step i
for j ∈ {0, ..., i− 2} do

(sj , aj , g, 0, sj+1)→ B
a1 ∼ π(sj , g)
(sj , a1, g, 0, sj+1)→ B
(sj , aj , si, 0, sj+1)→ B
a2 ∼ π(sj , si)
(sj , a2, si, 0, sj+1)→ B

end for
(si−1, ai−1, g,Q(si, ai−1, g), si)→ B
a3 ∼ π(si−1, g)
(si−1, a3, g, 0, si)→ B
(si−1, ai−1, si, 1, si)→ B
a4 ∼ π(si−1, si)
(si−1, a4, si, 0, si)→ B

end while

Figure 1: Pseudo-code for replay buffer filling with HER [2] and Actionable Models [1] methods.
We compare both implementations by showing in red modifications related to goal chaining, and in
blue edits related to unseen action regularization.

3



1.3 Hyper-parameters

We first list the hyper-parameters for the self-supervised reward shaping phase in Table 1. Table 2
details the hyper-parameters for the offline policy training stage with SAC [3]. For the Action-
able Models [1] and HER [2] baselines, we used the same parameters as in our approach, with the
exception of some parameters specific to these methods, shown in Table 3.

These hyper-parameters were obtained by performing a random search for all the methods over
several parameter values. All the experiments in this work were performed on 3 random seeds.

Common hyper-parameter Value

Task UMaze RoboYoga

Number of training pairs 5× 105 5× 105

Ratio of negatives 0.5 0.5
Ratio of negatives from same trajectory 0.5 0.5
Reachability threshold (τreach) 5 2
Batch size 512 512
Learning rate 0.001 0.0003
Weight decay 0.00001 0.00001
Total number of training epochs 20 100
Capacity of the directed graph 1000 10000

Table 1: Hyper-parameters for reachability network training and directed graph construction.

Hyper-parameter Value

Task UMaze RoboYoga

Replay buffer capacity 106 106

Batch size 2048 2048
Discount (γ) 0.90 0.95
Number of updates per epoch 1000 1000
Total number of epochs 1000 1000
Target update interval 1 1
Soft update coefficient (τ ) 0.005 0.005
SAC entropy parameter (α) 0.05 0.01
Optimizer Adam Adam
Learning rate 0.0003 0.0003
Action repeat 1 2
Reward scaling factor 0.1 0.5

Table 2: Hyper-parameters for offline policy learning with SAC [3] with our method.

Hyper-parameter Value

Task UMaze RoboYoga

Discount (γ) 0.99 0.99
SAC entropy parameter (α) 0.01 0.001
Learning rate 0.0001 0.0001
Reward scaling factor 1 10

Table 3: Hyper-parameters for offline policy learning with SAC [3] specific to Actionable Models [1]
and HER [2] baselines.

4



1.4 Architecture details

Reachability Network [4] The RNet has a siamese architecture with two embedding heads (one
for each observation of the pair) with tied weights, and a comparator network that compares both
embeddings and returns a reachability score. For the UMaze task, we used an embedding head with
3 fully-connected layers with batch normalization and Tanh activations, with a hidden size of 64
and an embedding size of 16. For the Roboyoga Walker task, the embedding network has the same
architecture, but we increased both the hidden and embedding sizes to 128. The comparator network
is also a fully-connected network. It contains batch normalization and ReLU activations. The hidden
size for the UMaze (respectively the RoboYoga Walker) task is set to 16 (resp. 128) and the number
of layers is 2 (resp. 4).

Policy Network The goal-conditioned policy network takes as input both the observation and
the goal, in separate heads with the same architecture but independent weights. These heads are
implemented as 3-layer fully-connected networks with Tanh activations, hidden size of dimension
64, and 16 dimensions for the feature size. The output from both the heads is then concatenated and
fed into a 2-layer fully-connected network of width 256. The critic network has the same architecture
for both observation and goal heads, and is followed by 3 fully connected-layers of width 256.

2 Full results on RoboYoga Walker task

We show the comparison of our method against the aforementioned baselines on each of the 12
goals of the RoboYoga Walker task in Figure 2. These goals are illustrated in Figure 3. We see that
our method masters most of the goals that do not require balancing (Lie Back & Front, Legs Up,
Lunge), and succeeds quite well at more complicated goals like Side Angle, Lean Back and Bridge,
but is unable to progress in complex goals like Head Stand or Arabesque.

0.0

0.5

1.0

Su
cc

es
s R

at
e

Lie Back Lie Front Legs Up Lunge

0.0

0.5

1.0

Su
cc

es
s R

at
e

Side Angle Stand Lean Back Boat

0 500 1000
epoch

0.0

0.5

1.0

Su
cc

es
s R

at
e

Bridge

0 500 1000
epoch

Stand One Feet

0 500 1000
epoch

Head Stand

0 500 1000
epoch

Arabesque

Ours HER HER + random neg action Actionable Models

Figure 2: Performance on the RoboYoga Walker talk for each of the 12 goals.

5



K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

Figure 3: Visualization of the 12 evaluation goals for the RoboYoga Walker task.

6



References
[1] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,

R. C. Julian, C. Finn, et al. Actionable models: Unsupervised offline reinforcement learning
of robotic skills. In International Conference on Machine Learning, pages 1518–1528. PMLR,
2021.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

[3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[4] N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T. Lillicrap, and S. Gelly.
Episodic curiosity through reachability. In International Conference on Learning Represen-
tations, 2018.

7


	Implementation details
	Self-supervised reward shaping
	Actionable Models baselines re-implementation
	Hyper-parameters
	Architecture details

	Full results on RoboYoga Walker task

