
6 Supplementary Meterial

Figure 3: Qualitative evaluation of domain generalization on real data of our autonomous vehicle.
Top: Trainig on GTA-5 dataset with adaptation to Cityscapes using EasyAdap; bottom: Trainig on
GTA-5 dataset without domain adaptation

6.1 Semantic Clustering

Section 3.1 provides an overview to our self-supervision approach implementing a semantic cluster-
ing. In the following, we describe this method in detail.

Computation of class centroids. We partition the feature representations according to their classi-
fication in the output layer. Let E(fsj) be the average of the subset fsj ⊂ fs of feature representations
that yield a prediction of the j-th class. In order to estimate the expected value of the class-specific
feature representations, we compute a running average from each training batch to the next.

cj ← cj · α+ E(fsj) · (1− α) (1)

Similarity matrix between source- and target-domain features. To compute the cosine similar-
ity between the class centroids cj and the feature representations f t of the target-domain images, we
first normalize them regarding the L2-norm.

c̄j :=
cj
‖cj‖

and f̄ ti :=
fi
‖fi‖

for fi ∈ f t (2)

Our similarity matrix applies a soft-max per target-domain feature on the cosine similarity.

pi,j =
exp(c̄Tj f̄

t
i /τ)

Zi
, (3)

where 1 ≤ i ≤ |f t|, 1 ≤ j ≤ K, and K is the number of classes.

Zi =

K∑
j=1

exp(c̄Tj f̄
t
i /τ). (4)

The parameter τ controls the concentration degree of the clustering process.

Clustering loss function. The basic idea of our loss function is to minimize the entropy of the
similarity matrix. Since we applied a soft-max over the columns of the similarity matrix, minimizing
this loss function yields matrices that minimize the distance of each particular feature in f t to exactly
one class centroid cj while maximizing its distance to the other class centroids. Hence, applying this
loss function pulls the features in f t to their nearest class centroid cj .

Features that are not closest to the correct class centroid disturb the clustering quality. We observed
that these features often yield an uncertain classification in the output layer. Hence, to mitigate the
influence of wrongly assigned features, we introduce a weight factor in the loss function that scales

12

with the certainty of its prediction vector: Lnc = − 1
|Bt|

∑|Bt|
i=1

∑K
j=1 pi,j log(pi,j) · 1

1+Hi
where

|Bt| is number of target-domain features and Hi is the entropy of the prediction vector correspond-
ing to f ti . Note, that Hi must be considered constant regarding the back-propagation. Otherwise,
minimizing the loss function could end up maximizing each entropy Hi.

6.2 EasyAdap Algorithm

For Algorithm 1, let K be the number of classes, let Nadapt be the number of steps of the adaptation
loop, and let Ntrain be the number of epochs for training a model.

Algorithm 1 EasyAdap: a simple yet effective unsupervised domain adaption

1 Input:
2 source-domain dataset S
3 target-domain dataset T
4 initialization model M
5 Mr ←M
6 repeat Ntrain:
7 Ŝ ← prepare_sampling(S) # do random and class−uniform sampling
8 M ← train_epoch(M, Ŝ) # supervised source−only training
9 repeat Nadapt:

10 T ← create_pseudo_labels(T, M)
11 M ←Mr # reinitialize weights
12 repeat Ntrain:
13 Ŝ ← prepare_sampling(S)
14 T̂ ← prepare_sampling(T)
15 for each batch Bs ∪Bt in Ŝ ∪ T̂:
16 Bs ∪Bt ← augment(Bs ∪Bt) # cropping uses provided polygon centroid if available
17 Lseg ←M(Bs ∪Bt) # segmentation loss
18 # update class centroids on source domain
19 fs ← pre-logit features of M(Bs)

20 f t ← pre-logit features of M(Bt)
21 for each 1 ≤ j ≤ K:
22 fs

j ← {f ∈ fs |M : f 7→ j} # partition features, see Section 6.1
23 cj ← cj · α+E(fs

j) · (1− α) # see Equation 1

24 normalize each cj and fi ∈ f t # see Equation 2

25 pi,j ← similarity_matrix({cj}, f t) # see Equation 3
26 Lnc ← clustering_loss((pi,j)) # see Equation 6.1
27 back_propagate(Lnc + Lseg) and update weights of model M
28 output M

6.3 Further Research Questions and Limitations

Does supervised training on richer datasets yield improved generalization capabilities? Instead of
learning or memorizing the data as classical machine learning approaches such as nearest-neighbor
classifiers do, deep learning approaches are superior because they find generalizing models for the
training data (see Section 4.2 for an example). This generalization effect is even stronger for more
diverse training datasets (which also causes the demand for large datasets in the area of deep learn-
ing). For this reason, a supervised training on the source and target domain achieves well generaliz-
ing models.

Does self-training improve generalization capabilities? The generalization capabilites of super-
vised training methods could explain the good generalization capabilities of self-training approaches
mimicking such a supervised training on both domains. Here, providing high-quality pseudo-labels
remains the crucial challenge to achieve this generalization effect through the target domain.

What causes EasyAdap’s performance drop on the second domain change? According to Ta-
ble 1, EasyAdap achieves near state-of-the-art performance on the GTA5 to Cityscapes domain
change. However, Table 2 shows a performance drop of EasyAdap. We assume it is due to our

13

self-supervision’s sensitivity to larger domain gaps; thus, the simplicity of our approach yields a
trade-off. Improved future datasets of the synthetic domain might mitigate these impediments.

Does self-training always work? We observed that self-training requires an initial model with suffi-
cient understanding of the target-domain data already. If this requirement is not satisfied, including
self-training in the training process even decreases the overall quality of the resulting model. Hence,
there seems to be a threshold of the initial model’s quality for the usefulness of self-training.

14

