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A Intuitive Example

We present an intuitive example of when optimizing a set of orientations to solve the rotation av-
eraging problem described in Equation (1), in the main text, can fail. In this example, we show
the benefits of the Iterative Modified Rodrigues Projective Averaging approach over the baseline
approach. We show that, while both SO(3) averaging and Iterative Modified Rodrigues Projective
Averaging share a class of non-optimal critical points, in the projective case, these critical points are
a subset of the problematic configurations for SO(3) averaging.
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A.1 Examples of Critical Points

In this section, we analyze a class of critical points shared by both standard SO(3) averaging and
Iterative Modified Rodrigues Projective Averaging. For simplicity, we will examine the N = 3

rotation case, where R = {R1, R2, R3} with relative rotations of Rji := RiR
>
j . As this is an

iterative algorithm, we need to initialize our predicted rotations to some values R̂ = {R̂1, R̂2, R̂3}.
In this case, we initialize each predictions to R̂i := RiR0 exp

((
θ0 + i 2π

N

)
ω0

)
where R0 is an

arbitrary but constant rotational offset, ω0 and θ0 define an arbitrary, but constant axis and constant
rotation, about which each initial estimate R̂i is rotated an additional angle of θi. We find that if
we use the previously described methods to update this initial configuration, under certain values
of R , R0, θ0, and ω0, the expected update at each value R̂i is 0, forming a critical point for each
algorithm.

A.1.1 Critical Point for SO(3) Averaging

Given the initial predictions of R̂ defined above, for all values of R , R0, θ0, and ω0, we find that
the expectation of the gradient of SO(3) averaging loss, Ei,j

[
∇r̂iLSO(3)

]
, is 0. The gradient of

any sampled pair i, j is given by

∇iLi,jSO(3) : = ∇r̂iLSO(3)

(
R̂i, R̂j , R

j
i

)
= log

(
R̂>i R

j
i R̂j

)
= log

(
(RiR0 exp (θiω0))

>
RjiRjR0 exp (θjω0)

)
= log (exp ((θj − θi)ω0))

= wrap[−π,π) [(θj − θi)]ω0

= wrap[−π,π)

[
2π

N
(j − i)

]
ω0

=
2π

N
(j − i)ω0.

This lead to an expected gradient of each estimate rotation R̂i of

Ej
[
∇r̂iLSO(3)

(
R̂i, R̂j , R

j
i

) ∣∣∣i = 1
]

=
1

2
wrap[−π,π)

∑
j 6=i

2π

N
(j − i)

ω0 = 0.

For all estimates R̂i, this sums to an integer multiple of 2πω0, which, due to the definition of the
SO(3) exponential map, wraps to 0.

A.1.2 Critical Point for Iterative Modified Rodrigues Projective Averaging

When optimizing using our Iterative Modified Rodrigues Projective Averaging method, we find that
this configuration is only a critical point when the relative orientations between each pair of rotations
are equal and opposite, i.e., Rji = Rk>i → Rji = exp

(
± 2π
N ω0

)
and the predicted orientations are

initialized at identity: R0 = I. This only happens when the true orientations R are evenly spaced
about an axis of rotations: Ri := exp

((
θ0 − i 2π

N

)
ω0

)
, leaving only axis of rotation ω0 and the

constant angular offset θ0 about that axis as free parameters.

As we are trying to update these rotations using a method compatible with stochastic gradient de-
scent, we are concerned with the expectation of our update with respect to a sampled pair. In this
case, the expected loss and update, defined in Equations 4c and 5 in the main paper, respectively, for

any projected rotation ψ̂i and its neighbor ψ̂j is Li,jΨ+ :=
∥∥∥ψ̂i − φ(qji ⊗ φ−1(ψ̂j))

∥∥∥2

where qji is the
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quaternion associated with Rji . As all ψ̂i are initialized to the identity, i.e., φ(qI) = 0 where qI is
the identity quaternion, we get

Li,jΨ+ :=
∥∥∥−φ−1(qji )

∥∥∥2
∇iLi,jΨ+ := −φ−1(qji )

Li,jΨ− :=
∥∥∥−φ−1(−qji )

∥∥∥2
∇iLi,jΨ− := −φ−1(−qji )

The relative rotations in this configuration are

Rji := exp

(
±2π

3
ω0

)
with relative quaternions qji :=

[
cos(π3 ) ± sin(π3 )ω0

]
, which leads to

φ(qji ) =
± sin(π3 )ω0

1 + cos(π3 )
=
±ω0√

3
φ(−qji ) =

∓ sin(π3 )ω0

1− cos(π3 )
= ±
√

3ω0.

This results in the potential losses for the positive and negative antipodes of

Li,jΨ+ = ‖φ(qji )‖ =
1

3
Li,jΨ− = ‖φ(−qji )‖ = 3

for all pairs of i, j. Selecting the minimum loss antipodes, we get gradients of

∇iLi,jΨ =
∓1√

3
ω0 ∇iLi,jΨ =

±1√
3
ω0,

for j = i + 1 and j = i − 1, respectively. The final expectation of the gradients with respect
neighborhood sampling is

Ej
[
∇ψ̂i
LSO(3)(ψ̂i, ψ̂j , R

j
i )|i = 1

]
=

1

2

∑
j 6=i

∇iLi,jΨ =
1

2

(
1√
3
ω0 −

1√
3
ω0

)
= 0.

While this demonstrates that our method is not without critical points, even in this simple example, it
shows that this configuration is only problematic when the true rotations are equally spaced around
an axis of rotation, ω0, and the estimates are initialized at identity. This compares very favorably to
the SO(3) algorithm, which can be in a critical point for any set of relative rotations, Rji , and with
initialization that can vary with an additional arbitrary constant rotation R0.

B Method Details

A full description of the SO(3) Averaging and Iterative Modified Rodrigues Projective Averaging
is shown in Algorithm 1 and Algorithm 2, respectively. In practice, we find γ = 0.5 and η = 0.1 to
produce the best results.

Algorithm 1: SO(3) Averaging

input : Initial estimates R̂ = {R̂1 . . . R̂N}
input : Local neighborhood Ni for each rotation R̂i
input : Relative rotations Rji , ∀j ∈ Ni
input : Learning Rate γ
output: Optimized set R̂i ∈ R̂

1 while Not Converged do
2 Sample a rotation R̂i ∼ R̂ to update
3 Sample a neighbor R̂j ∼ Ni
4 Compute optimal update r∆ with Equation 3b in the main paper
5 Apply update in SO(3): R̂i← R̂i exp(γr∆)
6 end
7 return R̂
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Algorithm 2: Iterative Modified Rodrigues Projective Averaging

input : Initial estimates Ψ̂ = {ψ̂1 . . . ψ̂N}
input : Local neighborhood Ni for each rotations ψ̂i
input : Relative rotations qji for each j ∈ Ni
input : Learning Rate γ
input : Max gradient η
output: Optimized set ψ̂i ∈ Ψ̂

1 while Not Converged do
2 Sample a projected rotation ψ̂i to update
3 Sample a neighbor ψ̂j ∼ Ni
4 Update the projected rotation ψ∆ with Equation 5 in the main paper)
5 if the magnitude of the update is larger than η then
6 Resize update to be of size η: ψ∆ ← η ψ∆

‖ψ∆‖
7 end
8 Apply update in MRP space ψ̂i ← ψ̂i + γψ∆

9 end
10 return Ψ̂

C 1DSfM Datasets

We report results on all structure from motions datasets available in the 1DSfM [1]. Each envi-
ronment is tested with 5 random initializations and the estimated rotations are updated by each
algorithm in batches of size 64, for 20K iterations. While Iterative Modified Rodrigues Projective
Averaging, MRP (Ours) outperform all PMG [2] based methods, the direct Quaternion optimiza-
tion regularly converges to relatively accurate local optima more quickly than ours, as shown in
Table S3 and Figure S.1. That being said, our method converges to a more accurate final configura-
tion for most datasets, with respect to mean relative error, Table S4, mean absolute error, Table S1,
and median absolute error, Table S2. Our method, as well as the baselines, do not appear to perform
well on the larger datasets. As a reminder, this algorithm is specifically designed for training deep
learned methods, not for direct rotation optimization. When training deep learned methods, all of
the weights are shared, allowing the network to use a single example to improve the accuracy of
all rotations near that example. Additionally, we see poor performance on datasets with extremely
large observation noise, specifically Gendarmenmarkt, whose median observation error is over 12
degrees. All dataset statistics can be found in Table S5. It should be noted that these datasets do
not fully cover the orientation space, and tend to largely cover only variations in yaw. For results on
datasets that represent full coverage of the orientation space, see the Uniformly Sampled Rotations
dataset or the Neural Network Optimization dataset.

D Curriculum for Neural Network Optimization

While the MRP (Ours) was able to learn the orientations of a fixed set of rotation images, training
results shown in Figure S.2, we find that a curriculum is required for any relatively supervised
method to generalized to unseen orientation. This curriculum training involves starting with a initial
base rotation. The model is rendered at this base rotation and a random rotation within 30◦ of this
base rotation. This base rotation is initially sampled with θ = 30◦ of a constant anchor orientation,
until the average training angular error of the previous epoch drops below a given threshold, in this
case, 5◦. Once the error drops below this threshold, the angular range, θ, from which this base
rotation is sampled is increased by 5◦. This process is repeated, increasing the value of θ by 5◦ each
time the error threshold is reached. We find that MRP (Ours) is able to complete the curriculum in
a reasonable number of iterations, about 100K, achieving a median final pairwise accuracy of 5.19◦

over three training sessions. This test error is sampled from two random rotations across the SO(3),
differing from the training error, which are sampled based on the curriculum and are always, at most,
30◦ apart. The quaternion optimization method, Quaternion, stalls out at curriculum angle of 90◦,
achieving a final pairwise accuracy of 12.41◦ and the 4D PMG [2] method never gets past the first
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Dataset
Mean Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-`1/2 MLP
[2] [3] [4] [5] [6] [7]

Ellis Island 7.5 7.03 6.41 7.44 5.59 3.04 2.71 2.61
NYC Library 9.23 8.32 7.38 8.92 6.03 2.71 2.66 2.63

Piazza del Popolo 16.37 16.1 15.88 15.24 10.03 4.10 3.99 3.73
Madrid Metropolis 13.55 13.23 11.78 13 11.25 5.30 4.88 4.65

Yorkminster 9.13 8.34 7.48 8.56 5.3 2.60 2.45 2.47
Montreal Notre Dame 8.17 7.65 6.24 7.76 4.02 2.63 2.26 2.06

Tower of London 8.02 8.12 8.36 7.44 5.58 3.42 3.41 3.16
Notre Dame 8.71 7.96 7.03 8.55 5.80 2.63 2.26 2.06

Alamo 9.41 11.98 10.98 8.74 6.42 3.64 3.67 3.44
Gendarmenmarkt 66.41 73.7 68.29 46.63 48.82 39.24 39.41 44.94

Union Square 32.46 40.86 40.92 13.44 10.22 6.77 6.77 6.54
Vienna Cathedral 29.18 31.42 32.94 18.67 13.60 8.13 8.07 7.21

Roman Forum 63.23 64.85 60.51 18.11 55.65 2.66 2.69 2.62
Piccadilly 53.35 84.37 106.84 26.29 29.98 5.12 5.19 3.93
Trafalgar 121.93 124.18 125.15 69.65 91.67 - - -

Table S1: Final Mean Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before
the double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].

Dataset
Median Absolute Error (◦)

4D PGM 6D PGM 9D PGM Quat MRP (Ours) IRLS-GM IRLS-`1/2 MLP
[2] [3] [4] [5] [6] [7]

Ellis Island 3.68 3.25 3.12 4.04 2.96 1.06 0.93 0.88
NYC Library 6.11 5.52 4.85 6.11 4.04 1.37 1.30 1.24

Piazza del Popolo 9.51 9.32 9.32 9.29 6.12 2.17 2.09 1.93
Madrid Metropolis 9.37 9.06 7.86 9.07 6.99 1.78 1.88 1.26

Yorkminster 6.44 5.77 4.56 6.11 3.29 1.59 1.53 1.45
Montreal Notre Dame 3.86 3.56 2.86 3.90 2.30 0.58 0.57 0.51

Tower of London 4.87 5.84 6.36 4.64 3.59 2.52 2.50 2.20
Notre Dame 4.39 3.73 3.09 4.48 2.61 0.78 0.71 0.67

Alamo 4.73 5.77 5.16 4.90 3.48 1.30 1.32 1.16
Gendarmenmarkt 64.08 71.57 62.9 43.91 45.92 7.07 7.12 9.87

Union Square 27.75 34.68 34.84 9.75 6.85 3.66 3.85 3.48
Vienna Cathedral 13.80 13.77 16.73 11.67 6.34 1.92 1.76 2.83

Roman Forum 53.78 62.46 57.71 16.56 41.95 1.58 1.57 1.37
Piccadilly 42.34 79.74 107.32 19.67 15.09 2.02 2.34 1.81
Trafalgar 126.71 129.57 130.45 65.54 89.09 - - -

Table S2: Final Median Absolute Rotation Error Results on 1DSfM [1] dataset. Results on the left before
the double lines are comparisons of local method after 20K iterations. Results on the right after the double lines
are obtained from global methods which require optimizing over global set of relative orientations data at each
step. Results associated sections with dashed line are not available from global methods [7].

level of the curriculum, with a final error of 125.09◦. The full training progression of each method,
over three random initialization each, can be seen in Figure S.3

One way this curriculum could be applied to captured data as follows: given a video, a curriculum
could be established based on temporal proximity in the video. Choosing an arbitrary initial frame
of the video as a anchoring frame, a curriculum can be generate by increasing temporal distance to
neighboring frames until the entire video has been used in training.

E 3D Object Rotation Estimation via Relative Supervision from Pascal3D+
Images

E.1 Experimental Setup

Pascal3D+ [9] is a standard benchmark for categorical 6D object pose estimation from real images.
We follow similar experimental settings as in [2, 4] for 3D object pose estimation from single
images. Following [2, 4], we discard occluded or truncated objects and augment with rendered
images from [10]. We report 3D object pose estimation via relative orientation supervision results on
two object categories of Pascal3D+ image dataset: sofa and bicycle. We compare our method MRP
with five baselines: Quaternion, 4D PMG [2], 6D PMG [3], 9D PMG [4] and 10D PMG [11].
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Dataset Mean nAUC
4D PGM [2] 6D PGM [3] 9D PGM [4] Quat MRP (Ours)

Ellis Island 22.56 24.07 25.02 15.05 14.58
NYC Library 28.53 31.12 32.07 18.20 16.84

Piazza del Popolo 37.36 44.18 43.98 25.13 22.21
Madrid Metropolis 35.91 38.49 39.15 24.34 24.48

Yorkminster 36.82 42.37 44.91 18.71 18.43
Montreal Notre Dame 33.97 37.54 40.37 17.69 16.19

Tower of London 39.98 45.99 49.54 18.14 18.85
Notre Dame 38.77 43.04 46.05 20.78 21.10

Alamo 39.87 49.08 50.22 20.47 22.05
Gendarmenmarkt 97.45 101.77 100.11 74.76 71.39

Union Square 77.22 87.01 89.76 34.60 46.20
Vienna Cathedral 72.25 81.07 83.48 38.74 42.94

Roman Forum 103.59 105.73 108.88 52.05 82.30
Piccadilly 115.83 123.41 126.16 62.87 78.31
Trafalgar 126.43 126.49 126.5 108.19 115.90

Table S3: Final Mean Normalized AUC on all 1DSfM [1] datasets after 20K iterations

Dataset Mean Relative Error (◦)
4D PGM [2] 6D PGM [3] 9D PGM [4] Quat MRP (Ours)

Ellis Island 12.21 11.49 10.37 11.87 9.03
NYC Library 14.29 12.94 11.51 13.67 9.30

Piazza del Popolo 21.91 21.24 20.64 20.74 13.49
Madrid Metropolis 20.43 19.84 17.85 19.62 17.09

Yorkminster 13.73 12.64 11.58 12.97 8.35
Montreal Notre Dame 12.5 11.59 9.58 11.93 6.22

Tower of London 12.41 12.24 12.44 11.56 8.71
Notre Dame 14.15 13.1 11.65 13.86 9.66

Alamo 14.23 17.47 15.75 13.17 9.78
Gendarmenmarkt 84.21 89.61 84.77 60.25 62.98

Union Square 44.44 55.4 55.94 19.98 15.52
Vienna Cathedral 41.8 45.62 44.18 26.64 20.32

Roman Forum 79.24 77.18 78.03 25.04 64.25
Piccadilly 74.25 105.15 122.06 38.61 46.21
Trafalgar 126.18 126.42 126.49 81.28 97.53

Table S4: Final Mean Relative Error (◦) on all 1DSfM [1] datasets after 20K iterations

We use ResNet18 [12] as the model backbone to predict object rotation from single images. The
model is supervised by the geodesic error between the induced relative orientation between the
predicted absolute orientations for a pair of images, and the relative orientation between the ground
truth absolute orientations for the image pair.

Specifically, MRP is supervised by the geodesic distance on the MRP manifold as described in
Equations 4 and 5 in the main paper. Quaternion is supervised by quaternion geodesic distance
as described in Section 4 in the main paper. While 4D/6D/9D/10D PMG are supervised by the
geodesic error derived from projective manifold gradients as in [2]. We use the same batch size of
20 as in [2, 4], and use Adam [13] with learning rate of 1e-4.

E.2 Result Analysis

Results for sofa showed in Figure S.4 and Table S6. Results for bicycle showed in Figure S.5
and Table S7. Pascal3D+ Sofa. For sofa category, as seen in Table S6, we find that after 50K
training iterations, MRP (Ours) achieves a mean angular pairwise error of 14.09◦ on the test set,
outperforms all other baselines. Quaternion achieves the worst error out of all methods, with final
angular pairwise error of 26.35◦. Besides achieving the lowest test angular error, we also find that
MRP (Ours) has the fastest convergence speed, as seen in Figure S.4.
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Dataset # Nodes # Edges Mean Error Median Error
Ellis Island 227 20K 12.52 2.89

NYC Library 332 21K 14.15 4.22
Piazza del Popolo 338 25K 8.4 1.81
Madrid Metropolis 341 24K 29.31 9.34

Yorkminster 437 28K 11.17 2.68
Montreal Notre Dame 450 52K 7.54 1.67

Tower of London 472 24K 11.6 2.59
Notre Dame 553 104K 14.16 2.7

Alamo 577 97K 9.1 2.78
Gendarmenmarkt 677 48K 33.33 12.3

Union Square 789 25K 9.03 3.61
Vienna Cathedral 836 103K 11.28 2.59

Roman Forum 1084 70K 13.84 2.97
Piccadilly 2152 309K 19.1 4.93
Trafalgar 5058 679K 8.64 3.01

Table S5: Dataset sizes and observation accuracies (◦) for all 1DSfM [1] datasets

Figure S.4: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Sofa Images. Mean test
pairwise angular error in degrees of sofa at different iterations of training. Trained over 80K training steps for 8
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.

Algorithm Mean (◦) Min (◦) Max (◦)
4D PMG [2] 17.39 ± 1.14 19.42 16.07
6D PMG [3] 15.20 ± 0.77 16.43 14.44
9D PMG [4] 14.61 ± 0.50 15.66 14.18

10D PMG [11] 19.28 ± 7.58 37.76 15.03
Quaternion 16.52 ± 4.12 26.57 14.38

MRP (Ours) 13.63 ± 0.78 15.08 12.62
Table S6: Final Mean Test Angular Pairwise Error on Pascal3D+ sofa Images after 80K training itera-
tions, over 8 random seeds.

Pascal3D+ Bicycle. For bicycle category, as seen in Table S7, we find that after 50K training
iterations, MRP (Ours) achieves a mean angular pairwise error of 29.21◦ on the test set, outperforms
all other baselines. Besides achieving the lowest test angular error, we also find that MRP (Ours)
has the fastest convergence speed, as seen in Figure S.5.
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Roman Forum: (N=1084)
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Figure S.1: Optimization results for all 1DSfM [1] datasets, ordered by number of cameras (N). Median
average-pairwise angular error (◦) is shown with shaded areas representing the first and third quartile over
all training sessions. The max average-pairwise angular error for each algorithm at each iteration is shown as a
dashed line.

Figure S.5: 3D Object Pose Estimation via Relative Supervision on Pascal3D+ Bicycle Images. Mean test
pairwise angular error (◦) of bicycle at different iterations of training. Trained over 80K training steps for 8
random seeds per method. Solid lines stand for mean errors, dashed line stand for max errors, and shaded area
represents error standard deviation.
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Figure S.2: Training results for rotations estimated by neural networks given images of the YCB drill [8]
rendered at each of 100 random rotations with various supervisions.Median average-pairwise angular error
(◦) is shown with shaded areas representing the first and third quartile over all training sessions. The max
average-pairwise angular error for each algorithm at each iteration is shown as a dashed line.
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Figure S.3: Curriculum Angle (left) and Average Pairwise Error (right), sampled over the full orientation space
for three training sessions with each method. Median average-pairwise angular error (◦) is shown with shaded
areas representing the first and third quartile over all training sessions. The max average-pairwise angular error
for each algorithm at each iteration is shown as a dashed line.

Algorithm Mean (◦) Min (◦) Max (◦)
4D PMG [2] 34.57 ± 2.21 38.13 31.90
6D PMG [3] 31.58 ± 2.24 35.66 28.42
9D PMG [4] 31.80 ± 1.52 34.87 29.96

10D PMG [11] 32.23 ± 2.10 36.98 29.87
Quaternion 31.92 ± 1.00 33.61 30.61

MRP (Ours) 29.46 ± 0.66 30.74 28.62

Table S7: Final Mean Test Angular Pairwise Error on Pascal3D+ bicycle Images after 80K training
iterations, over 8 random seeds.
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F 3D Object Rotation Estimation via Relative Supervision from
ModelNet40 Point Clouds

F.1 Experimental Setup

ModelNet40 [14] is a standard benchmark for categorical 6D object pose estimation from 3D point
clouds. We follow similar experimental settings as in [2]. We follow the same train/test data split as
in [2] and report 3D object pose estimation via relative orientation supervision results on the airplane
category of ModelNet40 dataset. We compare our method MRP with four baselines: Quaternion,
4D PMG [2], 6D PMG [3], 9D PMG [4] and 10D PMG [11] . We use PointNet++ [15] as the
model backbone to predict 3D absolute object rotation from single point cloud generated from the
ModelNet40 3D CAD models, as in [2]. The model is supervised by the geodesic error between the
induced relative orientation between the predicted absolute orientations for a pair of point clouds,
and the relative orientation between the ground truth absolute orientations for the point cloud pair.

We sample 1024 points per point cloud as in [2, 4], use a batch size of 14. As for training, we use
Adam [13] with learning rate of 1e-3, and run over 1 trial for each method.

We find that for any of the compared methods to generalize to unseen test point cloud instances, a
curriculum is needed. We train with a curriculum over the rotation space, the curriculum details can
be found in Section D. Specifically we start with base rotation range with θ = 30◦ of a constant
anchor orientation, and θ is increased by 5◦ whenever the previous mean epoch train angular error
drops below the curriculum threshold, 5◦. To speed up the training procedure, we increase this
curriculum threshold to 8◦ once θ gets to 125◦.

F.2 Result Analysis

Results on the airplane object class from ModelNet40 dataset is shown in Figure S.6 and Table S8.

As seen in Figure S.6 and Table S8, MRP (Ours) is able to go through the curriculum in 250K iter-
ations, reaching final test pairwise angular error of 5.49◦. Quaternion goes through the curriculum
much slower, reaching curriculum angle θ = 90◦ at the end of 250K steps. 4D PMG, 6D PMG,
9D PMG and 10D PMG, on the other hand, is not able to progress beyond the original curriculum
angle of θ = 30◦, reaching final test pairwise angular error around 35◦ after 200K iterations. In
summary, MRP (Ours) achieves faster convergence rate than all baselines, and is able to achieve
final test angular error on the order of 5◦ after progressing through the curriculum.
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Figure S.6: 3D Object Rotation Estimation via Relative Supervision from ModelNet40 Point Clouds -
airplane. Left: Curriculum angle progression through training iterations. Right: Average test pairwise angular
error (◦), sampled over the full orientation space for 1 training session with each method.
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Algorithm Mean Test Angular Pairwise Error (◦)
4D PMG [2] 35.35
6D PMG [3] 34.12
9D PMG [4] 35.80

10D PMG [11] 35.26
Quaternion 12.86

MRP (Ours) 5.49
Table S8: Final Mean Test Angular Pairwise Error on ModelNet40 airplane Point Clouds after at most
250K training iterations.

G Absolute Orientation Supervision

G.1 Experimental Setup

In this paper, we are assuming that only relative orientation supervision is available; however, in
this section we explore how different orientation representations perform if absolute orientation
supervision is available, and specifically how Modified Rodriguez Parameters (MRP) [16] used in
this paper compare. To explore this, we perform an experiment on rotation estimation from 2D
images of rendered YCB drill supervised with absolute orientation instead of relative supervision.
We follow the same experimental setup as in Section 6.2 in the main paper, utilizing ResNet18 [12]
as the model backbone to predict absolute 3D object orientations from sets of 2D rendered object
images, rendered at 100 random rotations each. The neural network model is supervised by the
geodesic error between the predicted absolute orientation and the ground truth absolute orientation.
We compare the performance of different rotation parameterizations on this task. Specifically, we
compare the Modified Rodriguez Parameters (MRP) [16] (Oracle-MRP) with Quaternions (Oracle-
Quaternion). Each method is trained for 10K steps, over 8 different rendered image sets. We report
the mean global pairwise angular error over the whole set of 100 images over the training process in
Table S9.

G.2 Result Analysis

We report results on three metrics: 1) mean global train absolute angular error; 2) median global train
absolute angular error; 3) percentage of runs that converge with final pairwise angular error < 2◦

after 10K steps, which is referred to as 2◦ Acc. Specifically, global relative angular error is calculated
as the all-pair relative angular error for all pairs within the image set of 100. As see in Table S9,
Oracle-MRP achieves comparable but larger mean and median pairwise angular error compared to
Oracle-Quaternion, while both methods achieves the same 2◦ Acc of 87.5%. In summary, through
this simple experiment, we find that MRP is able to achieve comparable but slightly worse train
error for absolute orientation supervision compared to quaternions. Thus in the case of direct pose
supervision, MRP may not be the best choice of rotation representation; using an open manifold
such as in MRP is beneficial only in the case of relative pose supervision.

Mean Median
Algorithm Error (◦) Error (◦) 2◦ Acc (%)

Oracle-Quaternion 1.58 1.56 87.5
Oracle-MRP 1.81 1.86 87.5

Table S9: Absolute Orientation Supervision for Image Based Rotation Estimation from Rendered YCB
Drill Images using MRP vs Quaternions Parametrization. Final mean, median angular train error (◦) and
convergence (< 2◦) percentage for image based rotation estimation from rendered YCB drill images with
absolute orientation supervision, after 10K training steps over 8 sets of 100 rendered images.

H Object Orientation Prediction Qualitative Visual Results

We further show some qualitative visual illustrations of the object orientation prediction of trained
model at convergence, trained using our iterative MRP averaging method via relative orientation su-
pervision below. Examples from orientation estimation on the rendered YCB drill data as described
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in Section 6.2 in the main paper is shown in Figure S.7. Examples from orientation estimation on
unseen Pascal3D+ sofa and bicycle categories, as described in Section E.1, are shown in Figure S.8.

Figure S.7: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Rendered
YCB Drill Images. We show qualitative visual examples of predicted object 3D orientation from orientation
prediction model trained via iterative MRP averaging with relative orientation supervision, the model is eval-
uated after training for 10K steps from neural net optimization experiment described Section 6.2 of the main
paper. The predicted orientation is shown as coordinate frame (x, y, z). On the bottom of each example, we
show in text of the ground truth relative orientation angular difference (◦) between the pair of images, and
their predicted relative orientation angular difference (◦) induced from the absolute object orientation predicted
for each image. And finally we show the difference between the predicted relative angular difference and the
ground truth relative angular difference as angular error (◦).

Figure S.8: Qualitative Visual Examples for Object Orientation Estimation of MRP (Ours) on Unseen
Pascal3D+ Images. We show qualitative visual examples of predicted object 3D orientation from orientation
prediction model trained via iterative MRP averaging with relative orientation supervision on Sofa (left) and
Bicycle (right) images. The model is evaluated after training for 50K steps from 3D object rotation estimation on
Pascal3D+ experiment as described Section E. The predicted orientation is shown as coordinate frame (x, y, z).
On the bottom of each example, we show in text of the ground truth relative orientation angular difference (◦)
between the pair of images, and their predicted relative orientation angular difference (◦) induced from the
absolute object orientation predicted for each image. And finally we show the difference between the predicted
relative angular difference and the ground truth relative angular difference as angular error (◦).

12



References
[1] K. Wilson and N. Snavely. Robust global translations with 1dsfm. In Proceedings of the

European Conference on Computer Vision (ECCV), 2014.

[2] J. Chen, Y. Yin, T. Birdal, B. Chen, L. Guibas, and H. Wang. Projective manifold gradient
layer for deep rotation regression. arXiv preprint arXiv:2110.11657, 2021.

[3] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5745–5753, 2019.

[4] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Rostamizadeh, and A. Maka-
dia. An analysis of svd for deep rotation estimation. Advances in Neural Information Process-
ing Systems, 33:22554–22565, 2020.

[5] A. Chatterjee and V. M. Govindu. Efficient and robust large-scale rotation averaging. In
Proceedings of the IEEE International Conference on Computer Vision, pages 521–528, 2013.

[6] A. Chatterjee and V. M. Govindu. Robust relative rotation averaging. IEEE transactions on
pattern analysis and machine intelligence, 40(4):958–972, 2017.

[7] Y. Shi and G. Lerman. Message passing least squares framework and its application to rotation
synchronization. In International Conference on Machine Learning, pages 8796–8806. PMLR,
2020.

[8] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. 2018.

[9] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object detection
in the wild. In IEEE winter conference on applications of computer vision, pages 75–82. IEEE,
2014.

[10] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn: Viewpoint estimation in images
using cnns trained with rendered 3d model views. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2686–2694, 2015.

[11] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy, and J. Kelly. A smooth
representation of belief over so(3) for deep rotation learning with uncertainty. In Proceedings
of Robotics: Science and Systems (RSS’20), 2020.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

[14] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[16] J. Crassidis and F. Markley. Attitude estimation using modified rodrigues parameters. In Flight
Mechanics/Estimation Theory Symposium, pages 71–86. NASA, 1996.

13


	Intuitive Example
	Examples of Critical Points
	Critical Point for SO(3) Averaging
	Critical Point for Iterative Modified Rodrigues Projective Averaging


	Method Details
	1DSfM Datasets
	Curriculum for Neural Network Optimization
	3D Object Rotation Estimation via Relative Supervision from Pascal3D+ Images
	Experimental Setup
	Result Analysis

	3D Object Rotation Estimation via Relative Supervision from ModelNet40 Point Clouds
	Experimental Setup
	Result Analysis

	Absolute Orientation Supervision
	Experimental Setup
	Result Analysis

	Object Orientation Prediction Qualitative Visual Results

