
A KL-Divergence Trust Region Projection Layer409

As already mentioned in the main text, TRPLs [9] present a scalable and mathematically sound410

approach for enforcing trust regions in step-based deep RL. The layer takes the output of a standard411

Gaussian policy as input in terms of mean µ and variance Σ and projects it into the trust region if412

the given mean and variance violate their respective bounds. This projection is done for each input413

state individually. Subsequently, the projected Gaussian policy distribution with parameters µ̃, Σ̃ is414

used for any further steps, e. g. for sampling and/or loss computation. Formally, the layer solves the415

following two optimization problems for each state s416

argmin
µ̃s

dmean (µ̃s,µ(s)) , s.t. dmean (µ̃s,µold(s)) ≤ ϵµ, and (1)

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s.t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ, ‘ (2)

where µ̃s and Σ̃s are the optimization variables for input state s and ϵµ and ϵΣ are the trust region417

bounds for mean and covariance, respectively. Finally, µold and Σold are the reference mean and418

covariance for the trust region and dmean as well as dcov are the similarity metrics for the mean419

and covariance of a decomposable distance or divergence measure. As we only leverage the KL-420

divergence projection, we will provide only details for this particular projection below. For the other421

two projections we refer the reader to Otto et al. [9].422

Inserting the mean part of the Gaussian KL divergence into Equation 1 yields423

argmin
µ̃

(µ− µ̃)
T
Σ−1

old (µ− µ̃) s.t. (µold − µ̃)
T
Σ−1

old (µold − µ̃) ≤ ϵµ.

After differentiating the dual w.r.t. µ̃, we can solve for the projected mean424

µ̃ =
µ+ ωµold

1 + ω
with ω =

√
(µold − µ)

T
Σ−1

old (µold − µ)

ϵµ
− 1,

leveraging the optimal Lagrange multiplier ω. Similarly, we can insert the covariance part of the425

Gaussian KL divergence into Equation 2, which results in426

argmin
Σ̃

tr
(
Σ−1Σ̃

)
+ log

|Σ|
|Σ̃|

, s.t. tr
(
Σ−1

old Σ̃
)
− d+ log

|Σold|
|Σ̃|

≤ ϵΣ,

where d is the number of degrees of freedom (DoF). Once again, differentiating and solving the dual427

g(η) for the projected covariance yields428

Σ̃ =

(
η∗Σ−1

old +Σ−1

η∗ + 1

)−1

with η∗ = argmin
η

g(η), s.t. η ≥ 0.

Here, the the optimal Lagrange multiplier η∗ cannot be computed in closed form, however, a stan-429

dard numerical optimizer, such as BFGS, is able to efficiently find it. This can be made differentiable430

by taking the differentials of the KKT conditions of the dual. For more details, we refer to the orig-431

inal work [9].432

B Environment Details433

B.1 Box Pushing434

The goal of the box pushing task is to move a box to a specified goal location and orientation using435

the seven DoF Franka Emika Panda. Hence, the context space for this task is the goal position436

x ∈ [0.3, 0.6], y ∈ [−0.45, 0.45] and the goal orientation θ ∈ [0, 2π]. In addition to the contexts, the437

observation space for the step-based algorithms contains information about joints and end-effector438

as well as the current box location and orientation. To the original torque from the policy we add439

12

Figure 5: Visualization of the four control tasks box pushing, hopper jumping, beer pong, and table
tennis.

gravity compensation in each time step. The task is considered successfully solved if the position440

distance ≤ 0.05m and the orientation error ≤ 0.5rad. For the total reward we consider different441

sub-rewards. First, the distance to the goal442

Rgoal = ||p− pgoal||,
where p is the box position and pgoal the goal position itself. Second, the rotation distance443

Rrotation =
1

π
arccos |r · rgoal|,

where r and rgoal are the box orientation and goal orientation in quaternion, respectively. Third, an444

incentive to keep the rod within the box445

Rrod = clip(||p− hpos||, 0.05, 10)
where hpos is the position of the rod tip. Fourth, a similar incentive that encourages to maintain the446

rod in a desired rotation447

Rrod rotation = clip(
2

π
arccos |hrot · h0|, 0.25, 2),

where hrot and h0 = (0.0, 1.0, 0.0, 0.0) are the current and desired rod orientation in quaternion,448

respectively. And lastly, we utilize the following error449

err(q, q̇) =
∑

i∈{i||qi|>|qbi |}

(|qi| − |qbi |) +
∑

j∈{j||q̇j |>|q̇bj |}

(|q̇j | − |q̇bj |).

Here, q, q̇, qb, and q̇b are the robot joint’s position and velocity as well as their respective bounds.450

Additionally, we consider an action cost in each time step t451

τt = 5 · 10−4
K∑
i

(ait)
2,

where K = 7 is the number of DoF. In total we consider three different rewards.452

Dense Reward. The dense reward provides information about the goal and rotation distance in each453

time step t on top of the utility rewards454

Rtot = −Rrod −Rrod rotation − τt − err(q, q̇)− 3.5Rgoal − 2Rrotation.

Time-Dependent Sparse Reward. The time-dependent sparse reward is similar to the dense re-455

ward, but only returns the goal and rotation distance in the last time step T456

Rtot =

{
−Rrod −Rrod rotation − τt − err(q, q̇), t < T,

−Rrod −Rrod rotation − τt − err(q, q̇)− 350Rgoal − 200Rrotation, t = T.

Time- and Space-Dependent Sparse Reward. The second sparse reward additionally adds sparsity457

based on the position and only returns goal and rotation distance in the last time step when the box458

is near the goal location459

Rtot =


−Rrod −Rrod rotation − τt − err(q, q̇) · · ·
· · · − clip(1050Rgoal, 0, 100)− clip(15Rrotation, 0, 100) + 300, t = T and Rgoal ≤ 0.1,

−Rrod −Rrod rotation − τt − err(q, q̇), else.

13

B.2 Hopper Jump460

In the hopper jump task the agent has to learn to jump as high as possible and land on a certain goal461

position at the same time. We consider five basis functions per joint resulting in an 15 dimensional462

weight space. The context is four-dimensional consisting of the initial joint angles θ ∈ [−0.5, 0], γ ∈463

[−0.2, 0], ϕ ∈ [0, 0.785] and the goal landing position x ∈ [0.3, 1.35]. We consider a non-Markovian464

reward function for the episode-based algorithms and a step-based reward for PPO, which we have465

extensively designed to obtain the highest possible jump.466

Non-Markovian Reward. In each time-step t we provide an action cost467

τt = 10−3
K∑
i

(ait)
2,

where K = 3 is the number of DoF. In the last time-step T of the episode we provide a reward468

which contains information about the whole episode as469

Rheight = 10hmax,

Rgdist = ||pfoot,T − pgoal||2,
Rcdist = ||pfoot,contact − pgoal||2,

Rhealthy =

{
2 if zT ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else ,

where hmax is the maximum jump height in z-direction of the center of mass reached during the470

whole episode, pfoot,t is the x-y-z position of the foot’s heel at time step t, pfoot,contact is the foot’s471

heel position when having a contact with the ground after the first jump, pgoal is the goal landing472

position of the heel. Rhealthy is a slightly modified reward of the healthy reward defined in the473

original hopper task. The hopper is considered as ’healthy’ if the z position of the center of mass is474

within the range [0.5m,∞]. This encourages the hopper to stand at the end of the episode. Note that475

all states need to be within the range [−100, 100] for Rhealthy. Since this is defined in the hopper476

task from OpenAI already, we haven’t mentioned it here. The total reward at the end of an episode477

is given as478

Rtot = −
T∑

t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy.

Step-Based Reward. We consider a step-based alternative reward such that PPO is also able to479

learn a meaningful behavior on this task. We have tuned the reward such that we can obtain the480

best performance. The observation space is the same as in the original hopper task from OpenAI481

extended with the goal landing position and the current distance of the foot’s heel and the goal482

landing postion. We again consider the action cost in each time-step t483

τt = 10−3
K∑
i

(ait)
2,

and additionally consider the rewards484

Rheight,t = 3ht

Rgdist,t = 3||pfoot,t − pgoal||2Rhealthy,t =

{
1 if zt ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else ,

where these rewards are now returned to the agent in each time-step t, resulting in the reward per485

time-step486

rt(st, at) = −τt +Rheight,t +Rgdist,t +Rhealthy,t.

14

B.3 Beer Pong487

In the Beer Pong task the K = 7 Degrees of Freedom (DoF) robot has to throw a ball into a cup on488

a big table. The context is defined by the cup’s two dimensional position on the table which lies in489

the range x ∈ [−1.42, 1.42], y ∈ [−4.05,−1.25]. For the step-based algorithms we consider cosine490

and sine of the robot’s angles, the angle velocities, the ball’s distance to the cup bottom, the ball’s491

distance to the cup’s top, the cup position and the current time step. The action space for the step-492

based algorithms is defined as the torques for each joint, the parameter space for the episode-based493

methods is 15 dimensional which consists of the two weights for the basis functions per joint and494

the duration of the throwing trajectory, i.e. the ball release time.495

We generally consider action penalties496

τt =
1

K

K∑
i

(ait)
2,

consisting of the sum of squared torques per joint. For t < T we consider the reward497

rt(st, at) = −αtτt,

with αt = 10−2. For t = T we consider the non-Markovian reward498

Rtask =



−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 · · ·
· · · − 2||pc,bottom − pb,k||22 − αT τ, if cond. 1
−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 2
−2−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 3
−||pc,bottom − pb,T ||22 − αT τ, if cond. 4

Rtask =


−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 · · ·
· · · − 2||pc,bottom − pb,k||22 − αT τ, if cond. 1
−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 2
−2−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 3
−||pc,bottom − pb,T ||22 − αT τ, if cond. 4

,

where pc,top is the position of the top edge of the cup, pc,bottom is the ground position of the cup,499

pb,t is the position of the ball at time point t, and τ is the squared mean torque over all joints during500

one rollout and αT = 10−4. The different conditions are:501

• cond. 1: The ball had a contact with the ground before having a contact with the table.502

• cond. 2: The ball is not in the cup and had no table contact503

• cond. 3: The ball is not in the cup and had table contact504

• cond. 4: The ball is in the cup.505

Note that pb,k is the ball’s and the ground’s contact position and is only given, if the ball had a506

contact with the ground first.507

At time step t = T we also give information whether the agent’s chosen ball release time B was508

reasonable509

Rrelease =

{
−30− 10(B −Bmin)

2, if B < Bmin

−30− 10(B −Bmax)
2, if B < Bmax

,

where we define Bmin = 0.1s and Bmax = 1s, such that the agent is encouraged to throw the ball510

within the time range [Bmin, Bmax].511

The total return over the whole episode is therefore given as512

Rtot =

T−1∑
t=1

rt(st, at) +Rtask +Rrelease

A throw is considered as successfull if the ball is in the cup at the end of an episode.513

15

B.4 Table Tennis514

We consider table tennis for the entire table, i. e. incoming balls are anywhere on the side of the robot515

and goal locations anywhere on the opponents side. The goal is to use the seven degree of freedom516

robotic arm to hit the incoming ball based on its landing position and return it as close as possible517

to the specified goal location. As context space we consider the initial ball position x ∈ [−1,−0.2],518

y ∈ [−0.65, 0.65] and the goal position x ∈ [−1.2,−0.2], y ∈ [−0.6, 0.6]. The observation space519

again contains additional information about the joints and the ball. For this experiment, we do not520

use any gravity compensation and allow in the episode-based setting to learn the start time t0 and the521

trajectory duration T . The task is considered successful if the returned ball lands on the opponent’s522

side of table and within ≤ 0.2m to the goal location. The reward is defined as523

rtask =



0, if cond. 1
0.2− 0.2 tanh (min ||pr − pb||2), if cond. 2
3− 2 tanh (min ||pr − pb||2)− tanh (||pl − pgoal||2), if cond. 3
6− 2 tanh (min ||pr − pb||2)− 4 tanh (||pl − pgoal||2), if cond. 4
7− 2 tanh (min ||pr − pb||2)− 4 tanh (||pl − pgoal||2), if cond. 5

where pr is the position of racket center, pb is the position of the ball, pl is the ball landing position,524

pgoal is the target position. The different conditions are525

• cond. 1: the end of episode is not reached526

• cond. 2: robot did not hit the ball527

• cond. 3: robot did hit the ball but the ball did not land on table or floor528

• cond. 4: robot did hit the ball and returned it to the table or floor but it did not cross the net529

• cond. 5: robot did hit the ball and returned it to the table or floor and cross the net530

The episode ends when any of the following conditions are met531

• the maximum horizon length is reached532

• ball did land on the floor without hitting533

• ball did land on the floor or table after hitting534

For BBRL-PPO and BBRL-TRPL, the whole desired trajectory is obtained ahead of environment535

interaction, making use of this property we can collect some samples without physical simulation.536

The reward function based on this desired trajectory is defined as537

rtraj = −
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position538

upperbound. The desired trajectory is considered as invalid if rtraj < 0, an invalid trajectory will539

not be executed by robot. The overall reward for BBRL is defined as:540

r =

{
rtraj , rtraj < 0

rtask, otherwise

C Additional Evaluations541

16

0 50 100 150 200 250

0

0.5

1

1.5

2

Number Environment Step

H
ei

gh
ti

n
[m

]

PPO
BBRL-TRPL

Figure 6: The improved performance on the Hopper Jump task is also demonstrated on the jumping
profile for a fixed context. While BBRL-TRPL jumps once as high as possible, PPO constantly tries
to maximize the height at each time step which leads to several jumps throughout the episode and
consequently to a lower maximum height.

D Hyperparameters542

For all methods we optimized the learning rate, sample size, batch size, number of layers, and the543

number of epochs. For all BBRL methods and NDP, we additionally optimized the number of basis544

functions. Moreover, we found that NDP requires tuning of the scale of the predicted DMP weights,545

which was hard-coded to 100 in the original code base. However, this value only worked for the546

meta-world tasks, but not for the other tasks, hence we adjusted it to allow for a fair comparison.547

17

Table 1: Hyperparameters for the modified reacher experiments.

PPO NDP BBRL-PPO BBRL-TRPL

number samples 16000 64
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.05
ϵΣ n.a. 0.0005

optimizer adam
epochs 10 100
learning rate 3e-4
use critic True False
epochs critic 10 n.a.
learning rate critic 3e-4 n.a.
number minibatches 32 n.a.
trust region loss weight n.a 10.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [32, 32]
hidden layers critic [32, 32] n.a.
hidden activation tanh
initial std 1.0

number basis functions n.a. 5
number zero basis n.a. 1
weight scale n.a. 20 n.a.

18

Table 2: Hyperparameters for the box pushing experiments.

PPO NDP BBRL-PPO BBRL-TRPL

number samples 16000 160
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.005
ϵΣ n.a. 0.0005

optimizer adam
epochs 10 100
learning rate 3e-4 1e-4
use critic True True
epochs critic 10 100
learning rate critic 3e-4 1e-4
number minibatches 40 n.a.
trust region loss weight n.a 25.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [256, 256] [128, 128]
hidden layers critic [256, 256] [32, 32]
hidden activation tanh
initial std 1.0 1.0

number basis functions n.a. 5
number zero basis n.a. 1
weight scale n.a. 10 n.a.

19

Table 3: Hyperparameters for the Meta-World experiments.

PPO NDP BBRL-PPO BBRL-TRPL

number samples 16000 16
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.005
ϵΣ n.a. 0.0005

optimizer adam
epochs 10 100
learning rate 3e-4
use critic True False
epochs critic 10 n.a.
learning rate critic 3e-4 n.a.
number minibatches 32 n.a.
trust region loss weight n.a 10.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [128, 128] [32, 32]
hidden layers critic [128, 128] n.a.
hidden activation tanh relu
initial std 1.0 10.0

number basis functions n.a. 5
number zero basis n.a. 1
weight scale n.a. 100 n.a.

20

Table 4: Hyperparameters for the hopper jumping experiments.

PPO BBRL-PPO BBRL-TRPL

number samples 16384 320
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.005
ϵΣ n.a. 0.0005

optimizer adam
epochs 10 100
learning rate 3e-4 1e-4 5e-5
use critic True False
epochs critic 10 n.a.
learning rate critic 3e-4 n.a.
number minibatches 32 n.a.
trust region loss weight n.a 25.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [128, 128] [32, 32]
hidden layers critic [128, 128] n.a.
hidden activation tanh
initial std 1.0 1.0

number basis functions n.a. 5
number zero basis n.a. 1

21

Table 5: Hyperparameters for the Beer Pong experiments.

PPO BBRL-PPO BBRL-TRPL

number samples 16384 160
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.005
ϵΣ n.a. 0.0005

optimizer adam
epochs 10 100
learning rate 1e-4 1e-4 5e-5
use critic True False
epochs critic 10 n.a.
learning rate critic 3e-4 n.a.
number minibatches 32 n.a.
trust region loss weight n.a 25.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [128, 128] [32, 32]
hidden layers critic [128, 128] n.a.
hidden activation tanh
initial std 1.0 1.0

number basis functions n.a. 2
number zero basis n.a. 2

22

Table 6: Hyperparameters for the Table Tennis experiments.

PPO BBRL-PPO BBRL-TRPL

number samples 16000 200
GAE λ 0.95 n.a.
discount factor 0.99 n.a.

ϵµ n.a. 0.0005
ϵΣ n.a. 0.00005

optimizer adam
epochs 10 100
learning rate 3e-4 1e-4 3e-4
use critic True
epochs critic 10 100
learning rate critic 3e-4 1e-4 3e-4
number minibatches 32 n.a.
trust region loss weight n.a 25.0
entropy loss penalty 0

normalized observations True False
normalized rewards True False
observation clip 10.0 n.a.
reward clip 10.0 n.a.
critic clip 0.2 n.a.
importance ratio clip 0.2 n.a.

hidden layers [256, 256] [256]
hidden layers critic [256, 256] [256]
hidden activation tanh
initial std 1.0

number basis functions n.a. 3
number zero basis n.a. 1

23

	KL-Divergence Trust Region Projection Layer
	Environment Details
	Box Pushing
	Hopper Jump
	Beer Pong
	Table Tennis

	Additional Evaluations
	Hyperparameters

