
Is Anyone There? Learning a Planner
Contingent on Perceptual Uncertainty

Supplemental Material

A Decision matrices for each scenario

The potential outcomes of the scenarios in our partially-observed planning benchmark can be denoted
using a decision matrix. See Fig. 1 for decision matrices outlining the two-agent scenarios, and Fig. 2
for a decision matrix outlining the three-agent scenario.

(a) Overtake scenario (b) Blind summit scenario (c) Intersection scenario

Figure 1: A decision matrix for each scenario specifying the possible outcomes from rolling out human-like
policies. This matrix specifies the total number of modes in the expert dataset (used to train the learned generative
trajectory model). The columns specify the behavioral policy (an underconfident, overconfident, or optimal
driver), and the rows specify the existence of another actor in the scene.

Figure 2: Decision matrix for a three-agent variant of the original occluded intersection scenario proposed by
Zhang and Fisac [1]. In the three agent variant, the occluded agent on the right of the intersection is mirrored on
the left-hand side. Because the game-theoretic planner only supports two-player games, the addition of a second
agent travelling in the ‘danger zone’ of the ego vehicle means the game-theoretic planner no longer works and
will default to an FRS planner, resulting in suboptimal conservative planning.



B Graphical representation of AVP

zr1 zr2

xr
1 Xr

2

o

Xh
1 Xh

2

zh1 zh1

Dh
1 Dh

2

Figure 3: Graphical representation of a plan in AVP applied to a two-agent scenario (a
robot r and a human h). AVP is a co-influence model that allows for co-leader planning:
optimizing for zr plans a policy modelled to influence and be influenced by the stochastic
behavior of the human. Importantly, AVP also models the influence of both the human’s
position X̃h and robot’s position Xr on the human’s detection Dh. Modelling this
relationship enables planning a future robot position that reduces the robot’s uncertainty
of the human agent’s existence.

C Algorithm for closed-loop control with AVP

Algorithm 1: Receding horizon control with AVP
Require: Trained predictive model M , planning loss criterion L, replanning rate R, fized-size queue Q,

P-controller C
1 count = 0
2 while control is engaged do
3 if count = R then
4 # replan
5 Collect observed joint trajectory history x̃≤0 from Q
6 Collect current perceptual context i0 from sensor
7 Generate optimal trajectory according to the AVP planner using M , L, x̃≤0, and i0
8 count = 0
9 else

10 Apply controls to follow target ego trajectory according to C
11 Append current observed joint trajectories to Q
12 count = count+ 1

D Additional model training details

We train a recurrent neural network on a dataset of partially-observed trajectories (positions, if defined)
and LiDAR contexts. Positions for all agents in the scene are preprocessed (during training) by shifting
and rotating such that the ego is located at (0,0) facing the +X direction. Observed positions are also
offset by a small amount of random noise to prevent overfitting. LiDAR point cloud observations
are converted to (60,360) range map images to enable simple processing with a convolutional neural
network (CNN). The weights of the RNN are optimized to reduce the negative log-likelihood using
the Adam optimizer. We use a learning rate of 1e-4 and train for 500 epochs. Our RNN architecture
uses a hidden size of 256 with 2 layers, and during training the autoregressive rollouts are generated
using teacher forcing. The prediction heads for µ and σ use tanh and exp(tanh) activations. The
context encoder is a CNN with 3 convolutional layers with a kernel size of (3,3) for each layer, 32
filters for the first 2 layers and 8 filters for the final layer (the spatial resolution is flattened after the
third convolutional layer using a fully-connected layer).

E Additional data collection details

We collect training data in the CARLA simulator using the ScenarioRunner framework. We
first specify the initial setup for each scenario by setting the number of vehicles, their terminal
destinations, and their spawn points. For vehicles with forking behaviors (i.e., not including non-
interactive vehicles such as the truck in the overtake scenario), we script their control code to depend
on provided arguments corresponding to the various behaviors described in the decision matrices in
Fig. 1. Once the behavioral policies have been tuned to produce the full set of outcomes, we collect
training data by running the scenarios in CARLA while logging each vehicle’ position and the ego
vehicle’s LiDAR observation (simulated using Unreal Engine’s semantic ray casting). The scenario

2

https://carla-scenariorunner.readthedocs.io/en/latest/


Figure 4: Several visualized planned trajectories from the two-agent intersection scenario. Green indicates a
fragment of a past position data (used as input to the model, in addition to perceptual context), purple indicates
planned future ego trajectory, and orange indicates predicted sampled non-controllable vehicle positions.

terminates when the ego vehicle reaches its target destination or when a collision occurs. The ground
truth vehicle positions are processed into partially observed data by replacing each non-ego vehicles
position with a mask token if the vehicle was not detected in the ego’s semantic LiDAR point cloud.

F Additional qualitative and quantitative evaluation

F.1 Discussion of additional quantitative metrics for generated plans

Table 1 includes the number of collisions incurred, as well as the average time required to reach
the goal (i.e., how fast does the planner complete the objective). We also provide statistics for a
lower-bound overly conservative ‘safety’ policy, which never reaches the goal optimally, but also
never results in a crash. We note that only AVP, SOAP, and the safety policy are able to safely
complete the two-agent scenarios (SOAP fails on the three-agent scenario). Note that the average
time-to-goal is lower for the single-agent and multi-agent baselines because the generated plans are
riskier, resulting in frequent crashes. Compared to the safety policy, AVP is able to significantly
improve on the average time-to-goal while avoiding additional collisions.

F.2 Videos of generated plans

At the linked website we provide videos illustrating the generated plans for the overly conservative
safety policy, AVP, and the overconfident baseline policies (the single-agent and naive multi-agent
models). From the videos, we can see that the single-agent and multi-agent baselines generate
aggressive plans (right column) that disregard the danger of unseen vehicles interacting with the ego
vehicle. On the other hand, the safety policy (left column) is inefficient and far more conservative
than most human drivers. AVP (middle column) generates plans that take calculated risks (i.e.,
contingency plans), resulting in more aggressive driving than the safety policy, without ever allowing
the ego vehicle to trigger an inescapable collision with an unseen vehicle.

F.3 Visuals of generated plans at key decision points

Figure 4 visualizes several planned trajectories from the two-agent intersection scenario. All three are
candidate trajectories that the AVP imitative model learns to predict using the collected driving data
(note that AVP learns to predict another driver, in orange, emerging at a future timestep). Optimizing
our planning equation with a collision penalty loss leads to AVP planning to execute the middle
trajectory, which balances safety (allowing enough time to yield) while maintaining a reasonable
speed. On the other hand, the single-agent and multi-agent baselines are only able to predict the right
trajectory: in the single-agent case, the model ignores non-ego vehicles, and for the multi-agent case,
because the initial timestep does not have a non-ego agent detected, no future positions for non-ego
vehicles are predicted. In both cases, the baseline planners will choose to execute the right trajectory,
which is dangerous and leads to a crash 50% of the time.

3

https://sites.google.com/view/active-visual-planning


Figure 5: Visualizing a batch of predictions from a trained model at two different timesteps (before and after
a non-ego vehicle is detected). Green indicates observed past position data (red indicates observed present
position), purple indicates predicted ego positions, and orange indicates predicted non-ego vehicle positions. In
the left two panels (timestep t = 0, before any non-ego vehicle is observed), the model generates predictions
where a vehicle is detected in the future (i.e., an unobserved vehicle exists), and predictions where a vehicle is
not detected. The leftmost panel is a zoomed-out version of the middle panel, illustrating the undefined (mask
token) position outputs when the predicted detection is 0 (the arbitrary mask outputs are ignored). In the right
panel (t = N , after a non-ego vehicle has been detected), the model exclusively generates predictions where a
vehicle is detected in the future, and there are no undetected outputs (visualized with the mask tokens).

F.4 Visuals of predicted detection at inflection points

In Fig. 5 we illustrate how predicted detection changes once non-ego vehicles have been detected.
Prior to the ego detecting any vehicles, AVP will predict a balance of futures with non-ego agents
existing (i.e., becoming detected in the future) and non-existing - the precise balance is determined
by the distribution in the training data. However, once another vehicle has been detected by the ego,
AVP will collapse its belief and consistently predict (correctly) that another vehicle exists, up until
the vehicle exits the ego’s sensor range.

References
[1] Z. Zhang and J. F. Fisac. Safe occlusion-aware autonomous driving via game-theoretic active perception. In

RSS, 2021. 1

4


	Decision matrices for each scenario
	Graphical representation of AVP
	Algorithm for closed-loop control with AVP
	Additional model training details
	Additional data collection details
	Additional qualitative and quantitative evaluation
	Discussion of additional quantitative metrics for generated plans
	Videos of generated plans
	Visuals of generated plans at key decision points
	Visuals of predicted detection at inflection points


