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A Visual Explanations of TAX-Pose

A.1 Illustration of Corrected Virtual Correspondence

The virtual corresponding points, VA, VB given by Equation 3 in the main text, are constrained to
be within the convex hull of each object. However, correspondences which are constrained to the
convex hull are insufficient to express a large class of desired tasks. For instance, we might want
a point on the handle of a teapot to correspond to some point above a stovetop, which lies outside
the convex hull of the points on the stovetop. To allow for such placements, for each point-wise
embedding �i, we further learn a residual vector, �Ai 2�A that corrects each virtual corresponding
point, allowing us to displace each virtual corresponding point to any arbitrary location that might
be suitable for the task. Concretely, we use a point-wise neural network gR which maps each
embedding into a 3D residual vector:

�Ai = gR

⇣
�A

i

⌘
2 R3

, �Bi = gR

⇣
�B

i

⌘
2 R3

Applying these to the virtual points, we get a set of corrected virtual correspondences, ṽA
i 2 ṼA

and ṽB
i 2 ṼB, defined as

ṽA
i = vA

i + �Ai , ṽB
i = vB

i + �Bi (10)

These corrected virtual correspondences ṽA
i define the estimated goal location relative to object B

for each point pi 2 PA in object A, and likewise for each point in object B, as shown in Figure 6.

Figure 6: Computation of Corrected Virtual Correspondence. Given a pair of object point clouds PA,PB, a
per-point soft correspondence VA is first computed. Next, to allow the predicted correspondence to lie beyond
object’s convex hull, these soft correspondences are adjusted with correspondence residuals, �A, which results
in the corrected virtual correspondence, ṼA. The coloring scheme and the point size on the rack represent the
the value of the the attention weights, where the more red and larger the point, the higher the attention weights,
the more gray and smaller the point the lower the attention weights.

A.2 Learned Importance Weights

A visualization of the learned importance weights, ↵A and ↵B for the mug and rack are visualized
by both color scheme and point size in Figure 7
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Figure 7: Learned Importance Weights for Weighted SVD on Mug and Rack. The coloring scheme and the
point size on both objects represent the the value of the the learned importance weights, where the more yellow
and larger the point, the higher the learned importance weights, the more purple and smaller the point the lower
the learned importance weights.

B Proof of TAX-Pose Translational Equivariance

One benefit of our method is that it is translationally equivariant by construction. This mean that if
the object point clouds, PA and PB, are translated by random translation t↵ and t� , respectively, i.e.
PA0 = PA+ t↵ and PB0 = PB + t� , then the resulting corrected virtual correspondences, ṼB and
ṼA, respectively, are transformed accordingly, i.e. ṼB + t� and ṼA + t↵, respectively, as we will
show below. This results in an estimated cross-pose transformation that is also equivariant to trans-
lation by construction. This is achieved because our learned features and correspondence residuals
are invariant to translation, and our virtual correspondence points are equivariant to translation.

First, our point features are a function of centered point clouds. That is, given point clouds PA and
PB, the mean of each point cloud is computed as

p̄k =
1

Nk

NkX

i=1

Pk.

This mean is then subtracted from the clouds,

P̄k = Pk � p̄k,

which centers the cloud at the origin. The features are then computed on the centered point clouds:

�k = gk(P̄k).

Since the point clouds are centered before features are computed, the features�k are invariant to an
arbitrary translation Pk0 = Pk + t.

These translationally invariant features are then used, along with the original point clouds, to com-
pute “corrected virtual points” as a combination of virtual correspondence points, vk0

i and the corre-
spondence residuals, �k

0

i . As we will see below, the “corrected virtual points” will be translationally
equivariant by construction.

The virtual correspondence points, vk0

i , are computed using weights that are a function of only the
translationally invariant query and key values from the cross-object attention transformer gTK , QK
and KK, which are in turn functions of only the translationally invariant features, �k:

wA0!B0

i = softmax

 
KB0qA0

ip
d

!
= softmax

✓
KBqA

ip
d

◆
= wA!B

i

thus the weights are also translationally invariant. These translationally invariant weights are applied
to the translated cloud
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vA0

i = PB0wA!B
i = (PB + t�)w

A!B
i =

X

j

pB
j · wA!B

i,j + t�
X

j

w
A!B
i,j = PBw

A!B
i + t� ,

since
PNB

j=1 w
A!B
ij = 1. Thus the virtual correspondence points vA0

i are equivalently translated.
The same logic follows for the virtual correspondence points vB0

i . This gives us a set of translation-
ally equivaraint virtual correspondence points vA0

i and vB0

i .

The correspondence residuals, �k
0

i , are a direct function of only the translationally invariant features
�k,

�k
0

i = gRK(�
k0

i ) = gRK(�
k
i ) = �ki ,

therefore they are also translationally invariant.

Since the virtual correspondence points are translationally equivariant, vA0

i = vA
i + t� and the

correspondence residuals are translationally invariant, �k
0

i = �ki , the final corrected virtual corre-
spondence points, ṽA0

i , are translationally equivariant, i.e. ṽA0

i = vA
i + �ki + t� . This also holds

for ṽB0

i , giving us the final translationally equivariant correspondences between the translated object
clouds as

⇣
PA + t↵, ṼB + t�

⌘
and

⇣
PB + t� , ṼA + t↵

⌘
, where ṼB =

⇥
ṽA
1 . . . ṽA

NA

⇤>.

As a result, the final computed transformation will be automatically adjusted accordingly. Given
that we use weighted SVD to compute the optimal transform, TAB, with rotational component
RAB and translational component tAB, the optimal rotation remains unchanged if the point cloud is
translated, RA0B0 = RAB, since the rotation is computed as a function of the centered point clouds.
The optimal translation is defined as

tAB := ¯̃vA �RAB · p̄A,

where ¯̃vA and p̄A are the means of the corrected virtual correspondence points, ṼB, and the object
cloud PA, respectively, for object A. Therefore, the optimal translation between the translated point
cloud PA0 and corrected virtual correspondence points ṼA0

is

tA0B0 = ¯̃vA0 �RAB · p̄A0

= ¯̃vA + t� �RAB · (p̄A + t↵)

= ¯̃vA + t� �RAB · p̄A �RAB · t↵
= tAB + t� �RAB · t↵

To simplify the analysis, if we assume that, for a given example, RAB = I, then we get
tA0B0 = tAB + t� � t↵, demonstrating that the computed transformation is translation-equivariant
by construction.

C Description of Cross-Object Attention Weight Computation

To map our estimated features  A and  B obtained from object-specific embedding networks
(DGCNN), gA and gB respectively, to a set of normalized weight vectors WA!B and WB!A, we
use the cross attention mechanism of our cross-object attention Transformer module [1]. Following
Equations 5a and 5b from the paper, we can extract the desired normalized weight vector wA!B

i for
the virtual corresponding point vA

i assigned to any point pA
i 2 PA using the intermediate attention

embeddings of cross-object attention module as:

wA!B
i = softmax

✓
KBqA

ip
d

◆
, wB!A

i = softmax
✓
KAqB

ip
d

◆
(11)

where qK
i 2 QK, and QK,KK 2 RNK⇥d are the query and key (respectively) for object K associ-

ated with cross-object attention Transformer module gTK , as shown in Figure 8. These weights are
then used to compute the virtual corresponding points VA, VB using Equations 5a and 5b in the
main paper.
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Figure 8: Cross-Object attention weight computation for virtual soft correspondence VA from object A to B.
QK,KK,ValK 2 RNK⇥d are the query, key and value (respectively) for object K associated with cross-object
attention Transformer module gTK . The Transformer block is modified from Figure 2(b) in DCP [2].

C.1 Ablation

To explore the importance of this weight computation design choice described in Equation 11, we
conducted an ablation experiment on this design choice against an alternative, arguably simpler
method for cross-object attention weight computation that was used in prior work [2]. Since the
point embeddings �A

i and �B
i have the same dimension d, we can select the inner product of the

space as a similarity metric between two embeddings.

To compute the virtual corresponding point vA
i assigned to any point pA

i 2 PA, we can extract the
desired normalized weight vector wA!B

i with the softmax function:

wA!B
i = softmax

⇣
�>

B�
A
i

⌘
, wB!A

i = softmax
⇣
�>

A�
B
i

⌘
(12)

This is the approach used in the prior work of Deep Closest Point (DCP) [2]. In the experiments
below, we refer to this approach as point embedding dot-product.

We conducted an ablation experiment on the weight computation method used in TAX-Pose (Equa-
tion 11) against the simpler approach from DCP [2] (Equation 12), on the upright mug hanging task
in simulation. The models are trained from 10 demonstrations and tested on 100 trials over the test
mug set. As seen in Table 5, the TAX-Pose approach (Equation 11) outperforms point embedding
dot-product (Equation 12) in all three evaluation categories on grasp, place, and overall in terms of
test success rate.

Attention Weight Ablation Grasp Place Overall
Point Embedding Dot-Product (Eqn. 12) 0.83 0.92 0.92

TAX-Pose (Ours) (Eqn. 11) 0.99 0.97 0.96

Table 5: Test success rate (") over 100 trials for mug hanging upright task, ablated on attention weight compu-
tation methods.
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D Description of Weighted SVD

The objective function for computing the optimal rotation and translation given a set of correspon-
dences for object K, {pk

i ! ṽk
i }

Nk
i and weights {↵k

i }
Nk
i , is as follows:

J (TAB) =
NAX

i=1

↵
A
i ||TAB pA

i � ṽA
i ||22 +

NBX

i=1

↵
B
i ||T�1

AB pB
i � ṽB

i ||22

First we center (denoted with ⇤) the point clouds and virtual points independently, with respect to
the learned weights, and stack them into frame-specific matrices (along with weights) retaining their
relative position and correspondence:

A =
⇥
P⇤>

A Ṽ⇤>
B
⇤
, B =

⇥
Ṽ⇤>

A P⇤>
B
⇤>

, � = diag ([↵A ↵B])

Then the minimizing rotation RAB is given by:

U⌃V> = svd(A�B>) (13a) RAB = U⌃⇤V
> (13b)

where ⌃⇤ = diag(
⇥
1, 1, ...det(UV>)

⇤
and svd is a differentiable SVD operation [3].

The optimal translation can be computed as:

tA = ¯̃vB �RABp̄A tB = p̄B �RAB¯̃vA
t =

NA
N

tA +
NB
N

tB (14a)

with N = NA +NB. In the special translation-only case, the optimal translation and be computed
by setting RAB to identity in above equations. The final transform can be assembled:

TAB =


RAB t
0 1

�
(15)

E Training Details

E.1 Supervision

To train the encoders gA(P̄A), gB(P̄B) as well as the residual networks gRA

⇣
�A

i

⌘
, gRB

⇣
�B

i

⌘
, we

use a set of losses defined below. We assume we have access to a set of demonstrations of the task,
in which the action and anchor objects are in the target relative pose such that TAB = I.

Point Displacement Loss [4, 5]: Instead of directly supervising the rotation and translation (as is
done in DCP), we supervise the predicted transformation using its effect on the points. For this
loss, we take the point clouds of the objects in the demonstration configuration, and transform each
cloud by a random transform, P̂A = T↵PA, and P̂B = T�PB. This would give us a ground truth
transform of TGT

AB = T�T�1
↵ ; the inverse of this transform would move object B to the correct

position relative to object A. Using this ground truth transform, we compute the MSE loss between
the correctly transformed points and the points transformed using our prediction.

Ldisp =
��TABPA �TGT

ABPA
��2 +

��T�1
ABPB �TGT�1

AB PB
��2 (16)

Direct Correspondence Loss. While the Point Displacement Loss best describes errors seen at
inference time, it can lead to correspondences that are inaccurate but whose errors average to the
correct pose. To improve these errors we directly supervise the learned correspondences ṼA and ṼB:

Lcorr =
���ṼA �TGT

ABPA

���
2
+
���ṼB �TGT�1

AB PB

���
2
. (17)

Correspondence Consistency Loss. Furthermore, a consistency loss can be used. This loss penal-
izes correspondences that deviate from the final predicted transform. A benefit of this loss is that it
can help the network learn to respect the rigidity of the object, while it is still learning to accurately
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place the object. Note, that this is similar to the Direct Correspondence Loss, but uses the predicted
transform as opposed to the ground truth one. As such, this loss requires no ground truth:

Lcons =
���ṼA �TABPA

���
2
+
���ṼB �T�1

ABPB

���
2
. (18)

Overall Training Procedure. We train with a combined loss Lnet = Ldisp + �1Lcorr + �2Lcons,
where �1 and �2 are hyperparameters. We use a similar network architecture as DCP [2], which
consists of DGCNN [6] and a Transformer [1].

In order to quickly adapt to new tasks, we optionally pre-train the DGCNN embedding networks over
a large set of individual objects using the InfoNCE loss [7] with a geometric distance weighting and
random transformations, to learn SE(3) invariant embeddings, see Appendix E.2 for details.

E.2 Pretraining

We utilize pretraining for the embedding network for the mug hanging task, and describe the details
below.

We pretrain embedding network for each object category (mug, rack, gripper), such that the em-
bedding network is SE(3) invariant with respect to the point clouds of that specific object cate-
gory. Specifically, the mug-specific embedding network is pretrained on 200 ShapeNet [8] mug
instances, while the rack-specific and gripper-specific embedding network is trained on the same
rack and Franka gripper used at test time, respectively. Note that before our pretraining, the network
is randomly initialized with the Kaiming initialization scheme [9]; we don’t adopt any third-party
pretrained models.

For the network to be trained to be SE(3) invariant, we pre-train with InfoNCE loss [7] with a
geometric distance weighting and random SE(3) transformations. Specifically, given a point cloud
of an object instance, PA, of a specific object category A, and an embedding network gA, we define
the point-wise embedding for PA as �A = gA(PA), where �Ai 2 �A is a d-dimensional vector
for each point pAi 2 PA. Given a random SE(3) transformation, T, we define  A = gA(TPA),
where  A

i 2  A is the d-dimensional vector for the ith point pAi 2 PA.

The weighted contrastive loss used for pretraining, Lwc, is defined as

Lwc : = �
X

i

log

"
exp

�
�
>
i  i

�
P

j exp
�
dij

�
�>i  j

��
#

(19)

dij : =

(
1
µ tanh (�kpAi � p

A
j k2), if i 6= j

1, otherwise
(20)

µ : = max (tanh (�kpAi � p
A
j k2)) (21)

For this pretraining, we use � := 10.

E.3 Architectural Variants

Goal-Conditioned TAX-Pose: To enable a single TAX-Pose model to scale to multiple related
placement sub-tasks for a pair of action and anchor objects, we design a goal-conditioned variant
(TAX-Pose GC), which receives a one-hot encoding of the desired semantic goal position (e.g.
‘top’, ‘left’, . . . ) for the task. This contextual encoding is incorporated into each DGCNN module
in the same way as proposed in the original DGCNN paper. This encoding can be used to provide
an embedding of the specific placement relationship that is desired in a scene (e.g. selecting a “top”
vs. “left” placement position) and thus enable goal conditioned placement.

Vector Neurons: We briefly experimented with Vector Neurons [10] and found that this led to worse
performance on this task.
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F Additional Results

F.1 NDF Placement Tasks

F.1.1 Further Ablations on Mug Hanging Task

In order to examine the effects of different design choices in the training pipeline, we conduct ab-
lation experiments with final task-success (grasp, place, overall ) as evaluation metrics for Mug
Hanging task with upright pose initialization for the following components of our method, see Table
6 for full ablation results along six ablated dimensions as detailed below. We also performed an
ablation experiment on alternative cross-object attention weight computation, as explained in Ap-
pendix C and results can be found in Table 5. For consistency, all ablated models are trained for 15K
steps.

1. Loss. In the full pipeline reported, we use a weighted sum of the three types of losses
described in Section 4.2 of the paper. Specifically, the loss used Lnet is given by

Lnet = Ldisp + �1Lcons + �2Lcorr (22)

where we chose �1 = 0.1, �2 = 1 after hyperparameter search.
We ablate usage of all three types of losses, by reporting the final task performance in
simulation for all experiments, specifically, we report task success on the following Lnet

variants.
(a) Remove the point displacement loss term, Ldisp, after which we are left with

L0
net = (0.1)Lcons + Lcorr

(b) Remove the direct correspondence loss term, Lcorr, after which we are left with

L0
net = Ldisp + (0.1)Lcons

(c) Remove the correspondence consistency loss term, Lcons, after which we are left with

L0
net = Ldisp + Lcorr

(d) From testing loss variants above, we found that the point displacement loss is a vital
contributing factor for task success, where removing this loss term results in no overall
task success, as shown in Table 6. However, in practice, we have found that adding
the correspondence consistency loss and direct correspondence loss generally help to
lower the rotational error of predicted placement pose compared to the ground truth of
collected demos. To further investigate the effects of the combination of these two loss
terms, we used a scaled weighted combination of Lcons and Lcorr, such that the former
weight of the displacement loss term is transferred to consistency loss term, with the
new �1 = 1.1, and with �2 = 1 stays unchanged. Note that this is different from
variant (a) above, as now the consistency loss given a comparable weight with dense
correspondence loss term, which intuitively makes sense as the consistency loss is a
function of the predicted transform TAB to be used, while the dense correspondence
loss is instead a function of the ground truth transform, TGT

AB , which provides a less
direct supervision on the predicted transforms. Thus we are left with

L0
net = (1.1)Lcons + Lcorr

2. Usage of Correspondence Residuals. After predicting a per-point soft correspondence
between objects A and B, we adjust the location of the predicted corresponding points by
further predicting a point-wise correspondence residual vector to displace each of the pre-
dicted corresponding point. This allows the predicted corresponding point to get mapped
to free space outside of the convex hulls of points in object A and B. This is a desirable
adjustment for mug hanging task, as the desirable cross-pose usually require points on the
mug handle to be placed somewhere near but not in contact with the mug rack, which can
be outside of the convex hull of rack points. We ablate correspondence residuals by directly
using the soft correspondence prediction to find the cross-pose transform through weighted
SVD, without any correspondence adjustment via correspondence residual.
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3. Weighted SVD vs Non-weighted SVD. We leverage weighted SVD as described in Sec-
tion 4.1 of the paper as we leverage predicted per-point weight to signify the importance of
specific correspondence. We ablate the use of weighted SVD, and we use an un-weighted
SVD, where instead of using the predicted weights, each correspondence is assign equal
weights of 1

N , where N is the number of points in the point cloud P used.
4. Pretraining. In our full pipeline, we pretrain the point cloud embedding network such

that the embedding network is SE(3) invariant. Specifically, the mug-specific embedding
network is pretrained on 200 ShapeNet mug objects, while the rack-specific and gripper
specific embedding network is trained on the same rack and Franka gripper used at test
time, respectively. We conduct ablation experiments where
(a) We omit the pretraining phase of embedding network
(b) We do not finetune the embedding network during downstream training with task-

specific demonstrations.
Note that in practice, we find that pretraining helps speed up the downstream training by
about a factor of 3, while models with or without pretraining both reach a similar final
performance in terms of task success after both models converge.

5. Usage of Transformer as Cross-object Attention Module. In the full pipeline, we use
transformer as the cross-object attention module, and we ablate this design choice by re-
placing the transformer architecture with a simple 3-layer MLP with ReLU activation and
hidden dimension of 256, and found that this leads to worse place and grasp success.

6. Dimension of Embedding. In the full pipeline, the embedding is chosen to be of dimen-
sion 512. We conduct experiment on much lower dimension of 16, and found that with
dimension =16, the place success is much lower, dropped from 0.97 to 0.59.

Ablation Experiment Grasp Place Overall
No Ldisp 0.01 0 0
No Lcorr 0.89 0.91 0.84
No Lcons 0.99 0.95 0.94

Scaled Combination: 1.1Lcons + Lcorr 0.10 0.01 0.01
No Adjustment via Correspondence Residuals 0.97 0.96 0.93

Unweighted SVD 0.92 0.94 0.88
No Finetuning for Embedding Network 0.98 0.93 0.91
No Pretraining for Embedding Network 0.99 0.72 0.71
3-Layer MLP In Place of Transformer 0.90 0.82 0.76
Embedding Network Feature Dim = 16 0.98 0.59 0.57

TAX-Pose (Ours) 0.99 0.97 0.96

Table 6: Mug Hanging Ablations Results

F.1.2 Effects of Pretraining on Mug Hanging Task

We explore the effects of pretraining on the final task performance, as well as training convergence
speed. We have found that pretraining the point cloud embedding network as described in E.2, is
a helpful but not necessary component in our training pipeline. Specifically, we find that while
utilizing pretraining reduces training time, allowing the model to reach similar task performance
and train rotation/translation error with much fewer training steps, this component is not necessary
if training time is not of concern. In fact, as see in Table 7, we find that for mug hanging tasks, by
training the models from scratch without our pretraining, the models are able to reach similar level
of task performance of 0.99 grasp, 0.92 for place and 0.92 for overall success rate. Furthermore, it is
able to achieve similar level of train rotation error of 4.91� and translation error of 0.01m, compared
to the models with pretraining. However, without pre-trainig, the model needs to be trained for about
2 times longer (26K steps compared to 15K steps) to reach the similar level of performance. Thus
we adopt our object-level pretraining in our overall pipeline to allow lower training time.

19



Another benefit of pretraining is that the pretraining for each object category is done in a task-
agnostic way, so the network can be more quickly adapted to new tasks after the pretraining is
performed. For example, we use the same pre-trained mug embeddings for both the gripper-mug
cross-pose estimation for grasping as well as the mug-rack cross-pose estimation for mug hanging.

Ablation Experiment Grasp Place Overall Train Rotation Error Train Translation Error
(�) (m)

No Pre-Training for Embedding Network 0.99 0.92 0.92 4.91 0.01
(trained for 26K steps)

No Pre-training for Embedding Network 0.99 0.72 0.71 15.39 0.01
(trained for 15K steps)

TAX-Pose (Ours) 0.99 0.97 0.96 4.33 0.01
(trained for 15K steps)

Table 7: Ablation Experiments on the Effects of Pre-Training. We report the task success rate for upright mug
hanging task over 100 trials each, as well as the grasping model’s training rotational error (�) and translation
error (m).

F.1.3 Additional Simulation Experiments on Bowl and Bottle Placement Task

Object Algorithm Grasp Place Overall Grasp Place Overall
Upright Pose Arbitrary Pose

Mug
DON [11] 0.91 0.50 0.45 0.35 0.45 0.17
NDF [12] 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose (Ours) 0.99 0.97 0.96 0.75 0.84 0.63

Bowl
DON [11] 0.50 0.35 0.11 0.08 0.20 0
NDF [12] 0.91 1 0.91 0.79 0.97 0.78

TAX-Pose (Ours) 0.99 0.92 0.92 0.74 0.85 0.85

Bottle
DON [11] 0.79 0.24 0.24 0.05 0.02 0.01
NDF [12] 0.87 1 0.87 0.78 0.99 0.77

TAX-Pose (Ours) 0.55 0.99 0.55 0.61 0.55 0.52

Table 8: Unseen Object Instance Manipulation Task Success Rates (") in Simulation on Mug, Bowl and Bottle
for Upright and Arbitrary Initial Pose. Each result is the success rate over 100 trials.

Additional results on Grasp, Place and Overall success rate in simulation for Bowl and Bottle are
shown in Table 8. For bottle and bowl experiment, we follow the same experimentation setup as
in [12], where the successful grasp is considered if a stable grasp of the object is obtained, and a
successful place is considered when the bottle or bowl is stably placed upright on the elevated flat
slab over the table without falling on the table. Reported task success results in are for both Upright
Pose and Arbitrary Pose run over 100 trials each.

F.1.4 Failure Cases

Some failure cases for TAX-Pose occur when the predicted gripper misses the rim of the mug by
a xy-plane translation error, thus resulting in failure of grasp, as seen in Figure 9a. A common
failure mode for the mug placement subtask is characterized by an erroneous transform prediction
that results in the mug’s handle completely missing the rack hanger, thus resulting in placement
failure, as seen in Figure 9b.
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(a) Failure of grasp prediction. Predicted
TAX-Pose for the gripper misses the rim of mug.

(b) Failure of place prediction. Predicted
TAX-Pose for mug results in the mug handle
misses the rack hanger completely.

Figure 9: An illustration of unsuccessful TAX-Pose predictions for mug hanging. In both subfigures, red points
represent the anchor object, blue points represent action object’s starting pose, and green points represent action
object’s predicted pose.

F.2 PartNet-Mobility Tasks

F.2.1 Expanded Results Tables

In the main text, we presented aggregated results of the performance of each method by averaging the
quantitative metrics for each sub-task for each object (“In”, “On”, “Left”, and “Right” in simulation
and “In”, “On” and “Left” in real-world), and then averaged across object classes to arrive at a
single metric per method. Here, we present the per-class breakdown of performance. See Table 9
for simulated results, and Table 10 for real-world results.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.26 0.73 37.82 0.82 37.15 0.65 44.84 0.68 30.69 1.06 40.38 0.69 45.09 0.76 45.00 0.79 45.65 0.64
E2E DAgger [13] 37.96 0.69 34.15 0.76 36.61 0.66 40.91 0.65 24.87 0.97 35.95 0.70 40.34 0.74 32.86 0.79 39.45 0.53

Ablations Traj. Flow [14] 35.95 0.67 31.24 0.82 39.21 0.72 34.35 0.66 28.48 0.75 37.14 0.59 29.49 0.70 39.60 0.76 39.69 0.48
Goal Flow [14] 26.64 0.17 25.88 0.15 25.05 0.15 30.62 0.15 27.61 0.10 28.01 0.18 20.96 0.24 29.02 0.23 22.13 0.20

Ours TAX-Pose 6.64 0.16 6.85 0.16 2.05 0.10 3.87 0.12 4.04 0.08 12.71 0.31 6.87 0.37 5.89 0.13 14.93 0.18
TAX-Pose GC 4.94 0.16 6.18 0.16 1.75 0.10 2.94 0.10 3.02 0.06 10.15 0.27 6.93 0.35 3.76 0.11 4.76 0.11

Table 9: Goal Inference Rotational and Translational Error Results (#). Rotational errors (ER) are in degrees
(�) and translational errors (Et) are in meters (m). The lower the better.

In On Left

Goal Flow 0.00 0.10 0.30 0.05 N/A 0.20 0.50 0.65 0.60
TAX-Pose 1.00 1.00 0.85 1.00 N/A 1.00 0.85 0.90 0.70

Table 10: Combined per-task results for real-world goal placement success rate.

We further provide results per-sub-task in simulation. For each category of anchor objects, sub-tasks
may or may not all be well-defined. For example, the doors of safes might occlude the action object
completely in a demonstration for “Left” and “Right” tasks due to the handedness of the door; and
a table’s height might be too tall for the camera to see the action object placed during the “Top”
task. To avoid these ill-defined cases, we omit object-category / sub-task pairings which cannot be
consistently defined from training and evaluation. We show visualizations of each defined task for
each object category in Figure 10. Results for each sub-task can be found in Tables 114, 12, 13, and
14 respectively.

4Categories from left to right: microwave, dishwasher, oven, fridge, table, washing machine, safe, drawer.

21



1�$

1�$

1�$

1�$

1�$

1�$

1�$

,Q

2Q

/HIW

5LJKW

Figure 10: A visualization of all categories of anchor objects and associated semantic tasks, with action objects
in ground-truth TAX-Poses used in simulation training.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.37 0.69 40.49 0.80 50.79 0.59 48.02 0.61 30.69 1.09 36.59 0.81 48.48 0.42 41.42 0.84 42.49 0.37
E2E DAgger [13] 36.06 0.67 38.57 0.68 43.99 0.63 42.34 0.57 24.87 0.96 30.87 0.90 42.96 0.46 29.79 0.83 35.08 0.33

Ablations Traj. Flow [14] 34.48 0.65 35.39 0.85 43.42 0.63 35.51 0.60 28.26 0.80 27.67 0.68 25.91 0.44 43.59 0.82 36.05 0.36
Goal Flow [14] 27.49 0.21 25.41 0.08 31.07 0.13 27.05 0.27 27.80 0.11 29.02 0.38 19.22 0.36 31.56 0.18 28.81 0.19

Ours TAX-Pose 11.74 0.23 5.81 0.11 1.82 0.08 5.92 0.11 3.67 0.07 19.54 0.41 7.96 0.63 5.96 0.12 43.27 0.33

Table 11: Goal Inference Rotational and Translational Error Results (#) for the “In’’ Goal. Rotational errors
(ER) are in degrees (�) and translational errors (Et) are in meters (m). The lower the better.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.69 0.74 41.94 0.74 36.70 0.52 38.23 0.73 41.69 1.10 48.57 0.75 48.98 0.63
E2E DAgger [13] 37.68 0.70 39.24 0.69 31.63 0.54 41.06 0.68 37.72 1.03 35.94 0.75 40.47 0.51

Ablations Traj. Flow [14] 35.13 0.76 34.78 0.70 39.14 0.59 31.10 0.69 33.07 0.97 35.61 0.71 37.09 0.87
Goal Flow [14] 22.10 0.20 27.82 0.26 20.43 0.09 34.66 0.10 22.71 0.12 26.48 0.27 0.48 0.32

Ours TAX-Pose 4.45 0.12 4.21 0.12 2.29 0.10 2.73 0.09 5.77 0.10 5.81 0.13 5.89 0.19

Table 12: Goal Inference Rotational and Translational Error Results (#) for the “On” Goal. Rotational errors
(ER) are in degrees (�) and translational errors (Et) are in meters (m). The lower the better.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 44.87 0.74 30.95 0.89 36.86 0.72 56.86 0.52 34.35 1.03 31.69 0.77 46.86 0.78
E2E DAgger [13] 41.32 0.68 31.40 0.84 38.49 0.73 47.64 0.51 36.47 0.99 27.72 0.73 39.83 0.51

Ablations Traj. Flow [14] 38.85 0.58 31.87 1.07 39.48 0.44 39.48 0.44 28.71 0.69 41.06 0.73 40.70 0.31
Goal Flow [14] 29.64 0.10 28.51 0.10 26.33 0.08 32.96 0.07 27.42 0.10 22.04 0.09 27.42 0.15

Ours TAX-Pose 6.02 0.17 12.73 0.28 1.59 0.11 2.91 0.12 4.41 0.08 12.12 0.34 6.38 0.12

Table 13: Goal Inference Rotational and Translational Error Results (#) for the “Left” Goal. Rotational errors
(ER) are in degrees (�) and translational errors (Et) are in meters (m). The lower the better.
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AVG.
ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 39.11 0.76 37.89 0.86 24.26 0.77 36.27 0.88 52.86 0.48 44.26 0.78
E2E DAgger [13] 36.80 0.73 27.40 0.84 32.31 0.74 32.61 0.82 49.27 0.46 42.40 0.78

Ablations Traj. Flow [14] 35.33 0.71 22.93 0.66 34.78 1.22 31.29 0.92 42.71 0.37 44.93 0.36
Goal Flow [14] 27.34 0.16 21.79 0.15 22.37 0.28 27.79 0.15 32.96 0.07 31.79 0.15

Ours TAX-Pose 4.33 0.13 4.64 0.14 2.48 0.11 3.91 0.15 6.47 0.17 4.17 0.08

Table 14: Goal Inference Rotational and Translational Error Results (#) for the “Right” Goal. Rotational errors
(ER) are in degrees (�) and translational errors (Et) are in meters (m). The lower the better.

F.2.2 Goal-Conditioned Variant

We train our goal-conditioned variant TAX-Pose GC (Appendix E.3) to predict the correct cross-
pose across sub-tasks, incorporating a one-hot encoding of each sub-task (i.e. ‘top’, ‘in’, ‘left’,
’right‘) so the model can infer the desired semantic goal location. Importantly, as with the task-
specific model (TAX-Pose), the TAX-Pose GC model is trained across all PartNet-Mobility object
categories. We report the performance of the variants in Table 9.

F.2.3 Failure Cases

Some failure cases for TAX-Pose occur when the predicted cross-pose does not respect the physical
constraints in the scene. For example, as seen in Fig. 11. TAX-Pose would fail when the prediction
violates the physical constraints of the objects, which in this case the action object collides with the
anchor object. In the real world, this would yield the robot unable to plan a correct path.

(a) Failure of ”In” prediction. Predicted
TAX-Pose violates the physical constraints by
penetrating the oven base too much.

(b) Failure of ”Left” prediction. Predicted
TAX-Pose violates the physical constraints by
being in collision with the leg of the drawer.

Figure 11: An illustration of unsuccessful real-world TAX-Pose predictions. In both subfigures, red points
represent the anchor object, blue points represent action object’s starting pose, and green points represent
action object’s predicted pose.

G Task Details

G.1 NDF Task Details

In this section, we describe the Mug Hanging task of the NDF Tasks and experiments in detail. The
Mug Hanging task is consisted of two sub tasks: grasp and place. A grasp success is achieved
when the mug is grasped stably by the gripper, while a place success is achieved when the mug is
hung stably on the hanger of the rack. Overall mug hanging success is achieved when the predicted
transforms enable both grasp and place success for the same trial. See Figure 12 for a detailed
breakdown of the mug hanging task in stages.
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Figure 12: Visualization of Mug Hanging Task (Upright Pose). Mug hanging task is consisted of two stages,
given a mug that is randomly initialized on the table, the model first predicts a SE(3) transform from gripper
end effector to the mug rim Tg!m, then grasp it by the rim. Next, the model predicts another SE(3) transform
from the mug to the rack Tm!r such that the mug handle gets hanged on the the mug rack.

G.1.1 Baseline Description

In simulation, we compare our method to the results described in [12].

• Dense Object Nets (DON) [11]: Using manually labeled semantic keypoints on the
demonstration clouds, DON is used to compute sparse correspondences with the test ob-
jects. These correspondences are converted to a pose using SVD. A full description of
usage of DON for the mug hanging task can be found in [12].

• Neural Descriptor Field (NDF) [12]: Using the learned descriptor field for the mug, the
positions of a constellation of task specific query points are optimized to best match the
demonstration using gradient descent.

G.1.2 Training Data

To be directly comparable with the baselines we compared to, we use the exact same sets of demon-
stration data used to train the network in NDF [12], where the data are generated via teleportation in
PyBullet, collected on 10 mug instances with random pose initialization.

G.1.3 Training and Inference

Using the pretrained embedding network for mug and gripper, we train a grasping model for the
grasping task to predict a transformation Tg!m in gripper’s frame from gripper to mug to complete
the grasp stage of the task. Similarly, using the pretrained embedding network for rack and mug,
we train a placement model for the placing task to predict a transformation Tm!r in mug’s frame
from mug to rack to complete the place stage of the task. Both models are trained with the same
combined loss Lnet as described in the main paper. During inference, we simply use grasping model
to predict the Tg!m at test time, and placement model to predict Tm!r at test time.

G.1.4 Motion Planning

After the model predicts a transformation Tg!m and Tm!r, using the known gripper’s world frame
pose, we calculate the desired gripper end effector pose at grasping and placement, and pass the end
effector to IKFast to get the desired joint positions of Franka at grasping and placement. Next
we pass the desired joint positions at gripper’s initial pose, and desired grasping joint positions to
OpenRAVE motion planning library to solve for trajectory from gripper’s initial pose to grasp pose,
and then grasp pose to placement pose for the gripper’s end effector.

G.1.5 Real-World Experiments

We pre-train the DGCNN embedding network with rotation-equivariant loss on ShapeNet mugs’
simulated point clouds in simulation. Using the pre-trained embedding, we then train the full TAX-
Pose model with the 10 collected real-world point clouds.

G.2 PartNet-Mobility Object Placement Task Details

In this section, we describe the PartNet-Mobility Object Placement experiments in detail. We select
a set of household furniture objects from the PartNet-Mobility dataset as the anchor objects, and a
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set of small rigid objects released with the Ravens simulation environment as the action objects. For
each anchor object, we define a set of semantic goal positions (i.e. ‘top’, ‘left’, ‘right’, ‘in’), where
action objects should be placed relative to each anchor. Each semantic goal position defines a unique
task in our cross-pose prediction framework.

G.2.1 Dataset Preparation

Simulation Setup. We leverage the PartNet-Mobility dataset [15] to find common household
objects as the anchor object for TAX-Pose prediction. The selected subset of the dataset contains 8
categories of objects. We split the objects into 54 seen and 14 unseen instances. During training, for
a specific task of each of the seen objects, we generate an action-anchor objects pair by randomly
sampling transformations from SE(3) as cross-poses. The action object is chosen from the Ravens
simulator’s rigid body objects dataset [16]. We define a subset of four tasks (“In”, “On”, “Left” and
“Right”) for each selected anchor object. Thus, there exists a ground-truth cross-pose (defined by
human manually) associated with each defined specific task. We then use the ground-truth TAX-
Poses to supervise each task’s TAX-Pose prediction model. For each observation action-anchor
objects pair, we sample 100 times using the aforementioned procedure for the training and testing
datasets.

Real-World Setup. In real-world, we select a set of anchor objects: Drawer, Fridge, and Oven
and a set of action objects: Block and Bowl. We test 3 (“In”, “On”, and “Left”) TAX-Pose models
in real-world without retraining or finetuning. The point here is to show the method capability of
generalizing to unseen real-world objects.

G.2.2 Metrics

Simulation Metrics. In simulation, with access to the object’s ground-truth pose, we are able to
quantitatively calculate translational and rotation error of the TAX-Pose prediction models. Thus,
we report the following metrics on a held-out set of anchor objects in simulation:

Translational Error: The L2 distance between
the inferred cross-pose translation (tpredAB ) and
the ground-truth pose translation (tGT

AB).

Rotational Error: The geodesic SO(3) dis-
tance [17, 18] between the predicted cross-pose
rotation (Rpred

AB ) and the ground-truth rotation
(RGT

AB).

Et = ||tpredAB � tGT
AB||2 ER =

1

2
arccos

 
tr(Rpred>

AB RGT
AB)� 1

2

!

Real-World Metrics. In real-world, due to the difficulty of defining ground-truth TAX-Pose, we
instead manually, qualitatively define goal “regions” for each of the anchor-action pairs. The goal-
region should have the following properties:

• The predicted TAX-Pose of the action object should appear visually correct. For example,
if the specified task is “In”, then the action object should be indeed contained within the
anchor object after being transformed by predicted TAX-Pose.

• The predicted TAX-Pose of the action object should not violate physical constraints of the
workspace and of the relation between the action and anchor objects. Specifically, the ac-
tion object should not interfere with/collide with the anchor object after being transformed
by the predicted TAX-Pose. See Figure 11 for an illustration of TAX-Pose predictions that
fail to meet this criterion.

G.2.3 Motion Planning

In both simulated and real-world experiments, we use off-the-shelf motion-planning tools to find a
path between the starting pose and goal pose of the action object.

Simulation. To actuate the action object from its starting pose T0 to its goal pose transformed by
the predicted TAX-Pose T̂ABT0, we plan a path free of collision. Learning-based methods such as
[19] deal with collision checking with point clouds by training a collision classifier. A more data-
efficient method is by leveraging computer graphics techniques, transforming the point clouds into
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Figure 13: Real-world experiments illustration. Left: work-space setup for physical experiments. Center:
Octomap visualization of the perceived anchor object.

marching cubes [20], which can then be used to efficiently reconstruct meshes. Once the triangular
meshes are reconstructed, we can deploy off-the-shelf collision checking methods such as FCL [21]
to detect collisions in the planned path. Thus, in our case, we use position control to plan a trajectory
of the action object A to move it from its starting pose to the predicted goal pose. We use OMPL
[22] as the motion planning tool and the constraint function passed into the motion planner is from
the output of FCL after converting the point clouds to meshes via marching cubes.

Real World. In real-world experiments, we need to resolve several practical issues to make TAX-
Pose prediction model viable. First, we do not have access to a mask that labels action and anchor
objects. Thus, we manually define a mask by using a threshold value of y-coordinate to automat-
ically detect discontinuity in y-coordinates, representing the gap of spacing between action and
anchor objects upon placement. Next, grasping action objects is a non-trivial task. Since, we are
only using 2 action objects (a cube and a bowl), we manually define a grasping primitive for each
action object. This is done by hand-picking an offset from the centroid of the action object before
grasping, and an approach direction after the robot reaches the pre-grasp pose to make contacts
with the object of interest. The offsets are chosen via kinesthetic teaching on the robot when the
action object is under identity rotation (canonical pose). Finally, we need to make an estimation of
the action’s starting pose for motion planning. This is done by first statistically cleaning the point
cloud [14] of the action object, and then calculating the centroid of the action object point cloud as
the starting position. For starting rotation, we make sure the range of the rotation is not too large for
the pre-defined grasping primitive to handle. Another implementation choice here is to use ICP [23]
calculate a transformation between the current point cloud to a pre-scanned point cloud in canonical
(identity) pose. We use the estimated starting pose to guide the pre-defined grasp primitive. Once a
successful grasp is made, the robot end-effector is rigidly attached to the action object, and we can
then use the same predicted TAX-Pose to calculate the end pose of the robot end effector, and thus
feed the two poses into MoveIt! to get a full trajectory in joint space. Note here that the collision
function in motion planning is comprised of two parts: workspace and anchor object. That is, we
first reconstruct the workspace using boxes to avoid collision with the table top and camera mount,
and we then reconstruct the anchor object in RViz using Octomap [24] using the cleaned anchor
object point cloud. In this way, the robot is able to avoid collision with the anchor object as well.
See Figure 13 for the workspace.

G.2.4 Baselines Description

In simulation, we compare our method to a variety of baseline methods.

• E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL that take the
action object from start to goal. These serve as “expert” trajectories for Behavioral Cloning
(BC). Our policy is represented as a PointNet++ network that, at each time step, takes as
input the point cloud observation of the action and anchor objects and outputs an incremen-
tal 6-DOF transformation that imitates the expert trajectory. The 6-DoF transformation is
expressed using Euclidean xyz translation and rotation quaternion. The final achieved pose
of the action object at the terminal state is used for computing the evaluation metrics.

• E2E DAgger: Using the same BC dataset and the same PointNet++ architecture as above,
we train a policy that outputs the same transformation representation as in BC using DAg-
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ger [13]. The final achieved pose of the action object at the terminal state is used for
computing the evaluation metrics.

• Trajectory Flow: Using the same BC dataset with DAgger, we train a dense policy using
PointNet++ to predict a dense per-point 3D flow vector at each time step instead of a single
6-DOF transformation. Given this dense per-point flow, we add the per-point flow to each
point of the current time-step’s point cloud, and we are able to extract a rigid transformation
between the current point cloud and the point cloud transformed by adding per-point flow
vectors using SVD, yielding the next pose. The final achieved pose of the action object at
the terminal state is used for computing the evaluation metrics.

• Goal Flow: Instead of training a multi-step policy to reach the goal, we train a PointNet++
network to output a single dense flow prediction which assigns a per-point 3D flow vector
that points from each action object point from its starting pose directly to its corresponding
goal location. Given this dense per-point flow, we add the per-point flow to each point of
the start point cloud, and we are able to extract a rigid transformation between the start
point cloud and the point cloud transformed by adding per-point flow vectors using SVD,
yielding goal pose. We pass the start and goal pose into a motion planner (OMPL) and
execute the planned trajectory. The final achieved pose of the action object at the terminal
state is used for computing the evaluation metrics.
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