Appendix

A Implementation Details

A.0.1 Skill Embedding and Skill Prior Learning

In this section, we provide a detailed overview of the network architectures used to learn the two
different skill modules in this work. The training dataset consists of sequences of state-action pairs
(skills) collected by running the robot in the environment. We detail the data collection process in
Appendix E. For the Fetch push, cleanup and stacking tasks, the state information consisted of a
19-dimensional vector that describes the configuration of the robot and the pose of the red block
in the environment. For the hook task, we additionally concatenate the pose of the hook and its
velocity to give a resulting state vector of 43-dimensions. The action space for all tasks consists of a
4-dimensional vector that encapsulates the agent’s end-effector pose in 3-dimensional space and the
gripper position. The skill-horizon H was set as 10 across all environments.

We parameterise both the VAE skill embedding and normalising flows skill prior modules as deep
neural networks and detail their implementation below.

VAE embedding module The VAE encoder first processes individual concatenated state-action
pairs in sequence using a one-layer LSTM with 128 hidden units. The hidden layer after processing
the final observation is then fed into an MLP block comprised of 3 linear layers with batch nor-
malisation and ReLU activation units with two output heads over the last layer, yielding parameters
W, o of the variational posterior log gs(z | s,a) ~ N(u.,0.). We set our latent space to be
4-dimensional, i.e. Z = R*. The decoder network mirrors the architecture of the MLP block used
in the encoder, taking as input concatenated latent skill vector z and current state s;. The final layer
has a single head and a tanh layer to ensure actions are bounded between (—1,1). The full action
sequence a’ is decoded sequentially, with observed states s; given to the encoder at each step. The
overall loss function for the embedding module is as provided in (1), noting the expectation is com-
puted by drawing a single sample from posterior g, (2 | §,a). Furthermore, the VAE reconstruction
loss term is the mean-squared error, i.e. log pg (ay | 2, 8¢) o< (ay — a})?.

State-conditioned skill prior sampling module The network parameterising the skill prior f :
Z xS — (G is a conditional real NVP [27] which consists of four affine coupling layers, where each
coupling layer takes as input the output of the previous coupling layer, and the robot state vector
so from the start of the skill sequence. We use a standard Gaussian pg(g) ~ AN (0,I) as our base
distribution for our generative model. Our architecture for f is identical to the conditional Real NVP
network used by Singh et al. [4], see Singh et al. [4] for an in-depth explanation. The loss function
for a single example is given by
of

det 5.7
During training, we pass the initial state vector of the robot before applying the skill as conditioning
information. We optimise our model using the Adam optimiser with a learning rate of le-4 and
batch size of 128. The overall objective for training the skills model for a single training observation
is given as

: 2

ﬁprior = Ingg(f(Zv SO)) + IOg

£skills = £embed + ‘Cpriory (3)
noting that gradients of the skills prior loss wW.r.t. z, i.e. Lpri0r /0% are blocked. What this means
is that the VAE embedding module is trained without being influenced by the skills prior objective,
however, the skills prior training is affected because the topology of latent space determined by the
embedding module is evolving during training. We found this joint training yielded more expressive
skill priors compared to first training on Lepcq and subsequently training the skills prior on Lrjor
after the embedding module has finished training.

A.0.2 Reinforcement Learning Setup

We jointly train the high-level and low-level policy in a hierarchical manner, where the high-level
policy leverages the resulting cumulative reward after a complete skill execution, while the residual
component is updated using the reward information generated after every environment step. By

12



jointly training these two systems, we make effective use of all the online experience collected by
the agent to update both the high-level and low-level policies, allowing for better overall sample
efficiency of downstream learning.

We utilise Proximal Policy Optimisation [33] as the underlying RL algorithm for both the high and
low-level policies, using the standard hyper-parameters given in the SpinningUp implementation
[35] with a clip ratio of 0.2, policy learning rate of 0.0003 and discount factor v = 0.99. We found it
important to train the high-level policy without the residual for an initial 20k steps before allowing
the residual policy to modify the underlying skills. This allowed the high-level policy to experience
the useful skills suggested by the skill-prior without being distorted by the random initial outputs of
the residual policy. As opposed to a hard introduction of the residual action, we gradually introduce
it by weighting this additive component using a smooth gating function which increases from 0 to
1 over the course of the first 20k steps. We found that this stabilised the training of the hierarchical
agent. While there are various ways to schedule this weighting parameter w, we utilised the logistic
function - with centre C' at 10k steps and a growth rate k£ of 0.0003.

1

W= k@0

“4)

B Tasks

We describe the downstream RL evaluation tasks in detail below. Note that each of the task environ-
ments exhibit dynamical and physical variations from the data collection environment used for skill
acquisition.

Slippery Push The agent is required to push a block to a given goal, however, we lowered the
friction of the table surface from that seen in the data collection push task. This makes fine-grained
control of the block more difficult. The agent receives a reward of 1 only once the block is at the
goal location, otherwise, it receives a reward of 0. The task is episodic and terminates after 100
timesteps.

Table Cleanup We introduce a rigid tray object in the scene, into which the agent must place the
given block. The tray was not present in the data collection environment and the edges act as an
obstacle that the downstream agent must overcome with its available skills. The agent receives a
reward of 1 only once the block is placed in the tray, otherwise, it receives a reward of 0. The task is
episodic and terminates after 50 timesteps.

Pyramid Stack Stacking task where the agent is required to place a small red block on top of a
larger blue block. The prior controllers used for data collection are unable to move the gripper above
the height of the larger block. Additionally, this task requires precise placement of the red block.
The agent receives a reward of 1 only once the red block is successfully balanced on top of the blue
block, otherwise, it receives a reward of 0. The task is episodic and terminates after 50 timesteps.

Complex Hook The agent is required to move an object to a target location, however, the robot
cannot directly reach the object with its gripper. We introduce a hook that the agent must use to
manipulate the object. To add to the complexity of this task, the objects are drawn randomly from
an unseen dataset of random objects and the table surface is scattered with random “bumps” that
act as rigid obstacles when manipulating the object. The agent receives a reward of 1 only once the
block is at the goal location, otherwise, it receives a reward of 0. The task is episodic and terminates
after 100 timesteps.

C SKkill Prior Ablation

In this section, we analyse the impact that our proposed skill prior has on the exploratory behaviours
of the agent during the early stages of training. For a quantitative evaluation, we denote the percent-
age of the first 20k steps that result in some form of manipulation of objects placed in the scene.
The intuition here is that for manipulation-based tasks, ”meaningful” behaviours would involve ma-
nipulation of the objects in the scene in order for the agent to make progress towards solving the
task at hand, as opposed to the extensive random exploration of irrelevant, non-manipulation-based
behaviours. We evaluate our skill prior based exploration strategy to approaches used in existing

13



Table 1: Skill prior impact on exploration. The table denotes the proportion of exploratory steps that
result in some form of manipulation of relevant objects in the environment during the first 20k steps.

Skill Prior (Ours) Skill Space Behaviour Prior ~ Gaussian Exploration
Object Interaction 45.4% 9.39% 4.72% 0.560%

? |
| ¥
| . S

|
s

(a) Gaussian Exploration (b) Skill Space

(c) Behaviour Prior (d) Skill Prior (Ours)

Figure 7: Exploratory Trajectories We plot the trajectories taken by four different strategies used
in skill-based and single-step RL approaches. Note how the skill prior significantly directs the ex-
ploratory trajectories towards the object in the environment while still allowing the agent to explore
a diverse set of surrounding skills.

RL literature for both skill-based and standard single-step agents. Table 1 summarises the results.
We additionally provide a visual depiction of the trajectories taken by each exploration strategy in
Figure 7 to better understand how the skill prior impacts exploration.

As indicated by the results, our NVP-based skill prior attains the highest proportion (>45%) of
meaningful exploratory behaviours and we can attribute this to the ability of the skill prior to sample
relevant skills that the agent can directly execute in the environment. We note here that while this
prior does heavily bias the agent’s behaviours towards manipulating the block, it does not completely
constrain the agent’s ability to explore other skills that could be potentially better for the downstream
task. The Skill Space variant tested in this ablation encompasses skill-based algorithms that sample
behaviours from the skill space using the stochastic policy output 7z (z|s). This is reminiscent
of the strategy used in SPiRL [3], which additionally regularises this distribution towards a learned
prior during training. This strategy achieved only 9.39% of relevant behaviours which we could use
to explain the discrepancy in the asymptotic performance of SPiRL and ReSkill (No Residual). We
note here that this value would vary based on the strength of the regularisation towards the prior,

14



== ReSkill e=== ReSkill (No Residual) === SPiRL

Training Data Target Task

Franka Kitchen

w

Subtasks Completed
- n

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Steps 1e6

Figure 8: Evaluation on Franka Kitchen Environment. (Left) Franka Kitchen environment pro-
posed by Gupta et al. [36] which requires the agent to manipulate a kitchen setup to reach a target
configuration. (Right) Note how ReSkill exhibits faster convergence to a higher reward than SPiRL.

and should increase as the policy output gets better regularised towards the prior over the course of
training. The Behaviour Prior tested in this work is the single-step prior proposed by Singh et al.
[4] and while it shares a similar operation to our skill prior we note it attains much lower interaction
than our skill-based variant. We could attribute this to the temporal nature of skills, which are less
noisy than constantly sampling single-step action allowing for more directed exploration towards
the block. Figure 7 (c) and (d) provides a visual depiction of this. Gaussian exploration has almost
no interaction with the block, which significantly impacts the agent’s ability to learn as shown in the
training curves for SAC, PPO and HAC in Figure 5.

D Evaluation on Long Horizon Manipulation Tasks

To demonstrate the broad applicability of ReSkill to higher dimensional tasks involving long-horizon
goals, we provide an additional evaluation in the Franka Kitchen environment introduced by Gupta
et al. [36]. To train the skills modules, we use the demonstration data provided in the D4RL
benchmark [37], which consists of 400 teleoperated sequences in which a 7-DoF Franka robot arm
manipulates objects in the scene (e.g. switch on the stove, open microwave, slide cabinet door).
During downstream learning, the agent has to execute an unseen sequence of multiple sub-tasks.
The agent receives a sparse, binary reward for each successfully completed sub-task. The action
space of the agent consists of a 7-dimensional vector that corresponds to each of the robot joints as
well as a 2-dimensional continuous gripper opening/closing action. The state space consists of a 60-
dimensional vector that consists of the agent’s joint velocities as well as the poses of the manipulable
objects. We summarise the results in Figure 8.

The training curves illustrate that ReSkill can effectively handle higher dimensional and long-
horizon tasks, and can substantially outperform SPiRL in both sample efficiency and convergence to
higher final policy performance. We note the high variance of ReSkill during the gradual introduc-
tion of the residual, which we can attribute to the long-horizon nature of the task and the multiple
strategies that the low-level agent can identify to adapt to the task at hand. It is important to note
however that this agent gradually converges towards a stable solution that can yield a much higher
reward after this transition phase. Without the residual, the ReSkill agent attains the same final
performance as SPiRL however still demonstrates faster convergence given the direct exploratory
guidance provided by our proposed skill prior.

15



E Data Collection

In order to re-purpose existing controllers for a wide range of tasks, we decompose their behaviours
into task-agnostic skills. We firstly collect a dataset of demonstration trajectories, consisting of
state-action pairs by executing the handcrafted controllers in the data collection environment. For
the block manipulation tasks, we script 2 simple controllers for a 7-DoF robotic arm each capable of
completing pushing and grasping manipulation tasks on an empty table as described in Algorithm
2 and 3. This dataset was used to train a single skills module that was later used for downstream
RL learning across Slippery-Push, Table-Cleanup and the Pyramid-Stacking task. For the hook task,
we scripted a simple controller that can manipulate a block using a hook object on an empty table
which we used to collect the required dataset. We note here that these controllers are suboptimal with
respect to the downstream tasks which each introduce additional complexities to the environment
that the RL agent will have to adapt to as described in Appendix B. To increase the diversity of
skills collected, we add Perlin noise [38] to the controller outputs. Perlin noise is correlated across
the trajectory, allowing for smooth deviations in trajectory space. Before adding these trajectories
to the dataset, we filter them based on a predefined rule: if it is longer than the skill horizon H we
add it to our dataset. Skills can be extracted from a trajectory, by randomly slicing a H dimensional
skill consisting of a sequence of actions @ = {ay,...,a;+g—1} and the corresponding states s =
{8t,..., St+—1} that these actions were executed in. For all experiments conducted in this work,
we set the skill horizon H to 10. Figure 9 shows a summary of the data collection process and the
notion of a skill from a recorded trajectory. We collect a total of 40k trajectories to train the skills
module for the Fetch manipulation tasks.

D ndd I o

Correlated Noise >

<

- -
- -

— W

A / skill

A

-

A

ﬂ
[ - ]

aE

Figure 9: Data collection. Skill extraction from trajectories collected from a handcrafted controller.
To obtain a diverse range of skills we add correlated Perlin noise to the trajectory rollouts before
skill extraction.

16



E.1 Handcrafted Controllers

We describe each of the controllers derived to complete simple tasks on an empty table with a single
object placed in front of it as shown in Figure 4 (a). This was the environment used for collecting
data for training the skill modules.

E.1.1 Reactive Push Controller

This controller is designed for pushing an object to a target location. Although this policy performs
well in the original Push task, its performance drops dramatically when the sliding friction on the
block is reduced as in the SlipperyPush task. Pseudo-code for the controller is provided in Algorithm
2.

Algorithm 2 Reactive Push

Given: threshold
Input: state
Output: action
1: if distance(targetObjectPose, objectPose) < threshold then
action < 0
2: else if gripper_at_pushloc(gripperPose, pushLoc) then
action <— push object to target
3: else
action <— move gripper to push location
4: end if
5: return action

E.1.2 Pick and Place Controller

This controller is designed to move to an object location, grasp the object and move it towards a
target goal. The controller does not lift the block higher than 3cm above the surface of the table
and therefore will fail if either the object has to be placed on a higher surface or alternatively, the
target is on the other side of a barrier. These failure cases are present in both the Pyramid-Stack and
Table-Cleanup tasks. Pseudo-code for the controller is provided in Algorithm 3.

Algorithm 3 Pick and Place

Given: threshold
Input: state
Qutput: action

1: if distance(targetObjectPose, objectPose) < threshold then
action < 0

2: else if is_grasped(gripperPose, objectPose) then
action <— move to target

3: else if object_in_gripper(gripperPose, objectPose) then
action < close gripper

4: else if gripper_above_object(gripperPose, objectPose) then
action <— move gripper down

5: else
action <— move above object

6: end if

7: return action

17



E.1.3 Reactive Hook Controller

This controller is designed to pick up a hook, move it behind and to the right of an object and pull
the object towards a target location. The controller and environment are adapted from the set of
tasks presented by Silver et al. [31]. The controller works well when the table is empty and when
the object being manipulated is a simple block. In the Complex-Hook environment, however, this
controller falls suboptimal as we introduce additional objects of varying masses and shapes as well
as rigid “bumps” which make the surface of the table uneven. This causes the hook to get stuck
when sliding objects along the table. Pseudo-code for the controller is provided in Algorithm 4.

Algorithm 4 Reactive Hook

Given: threshold
Input: state
Output: action
1: if distance(targetObjectPose, objectPose) < threshold then
action < 0
2: else if hook_is_not_grasped(gripperPose, hookPose) then
action <— grasp hook
3: else if hook_in_position(hookPose, objectPose) then
action < place hook to the right of object
4: else
action <— move object to target
5: end if
6: return action

18



