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Appendix A Preliminaries

This appendix contains additional background and related works on quadrotor trajectory planning.

In order to generate a fast and agile trajectory for a real quadrotor vehicle, an optimization problem
with complex feasibility constraints arising from aerodynamic and electromechanical phenomena
must be solved. By reformulating the optimization problem so that feasibility is the objective rather
than a constraint, the minimum-snap method sidesteps the troublesome feasibility constraints [1, 2].
By minimizing the fourth temporal derivative of the position, i.e., the snap, this method generates
smooth piece-wise polynomial trajectories that are less likely to activate the feasibility constraints.

Numerous algorithms aim to improve upon the polynomial minimum-snap trajectories, e.g., gen-
erating better optimized solutions or decreasing the required computation time. For instance, an
improved solution can be found by using a more general trajectory representation, without the topo-
logical constraints of a piece-wise polynomial representation, as shown by Foehn et al. [3]. The
computation time of the minimum-snap method can be reduced by avoiding non-linear optimization
subject to flight dynamics constraints. For example, Gao et al. [4] separate spatial and temporal
optimization to obtain a convex optimization problem subject to simple linear velocity and accel-
eration constraints. Similarly, Romero et al. [5] present a sampling-based method that generates a
velocity search graph between two waypoints (or gates) and finds the optimal velocity profile with
Dijkstra search. Alternatively, trajectory generation may be divided into global and local planning
problems, where accurate vehicle dynamics are only considered locally, e.g., using model predictive
control [6] or deep neural networks [7]. Visual input data can also be streamed to the local trajectory
planner to avoid obstacles, even when the vehicle is in the field [8, 9]. However, a reference path that
accurately guides the local planner towards the optimal global trajectory, such as the one provided
by our proposed algorithm, is still required.

When compared to minimum-snap trajectory optimization, most existing works either improve the
quality of the generated trajectories or reduce the computation time, but fail to do both. For instance,
an algorithm may find better solutions, but impose large computational burden, even taking several
hours per trajectory. On the other hand, algorithms that achieve real-time performance by adopting
coarse dynamics models may result in infeasible or overly conservative trajectories. Our work con-
siders the problem of online time-optimal trajectory planning that can re-generate a global path in
real-time while maintaining a sophisticated model of the vehicle dynamics.
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Appendix B Implementation Details

In this appendix, we provide additional, more detailed description of the model and learning imple-
mentation.

B.1 Seq2Seq Model

The training dataset consists of 10,000 waypoint sequences for each sequence length in the range
from five to fourteen waypoints. The dataset is augmented by flipping the x, y, and z planes,
which increases the size of the dataset by a factor of eight. Since the flipped trajectories share the
same minimum-snap time allocation ratio, we only solve the nonlinear optimization (4) once for
each original sequence. The minimum-snap trajectory duration TMS does differ between flipped
trajectories and is found separately for all augmented data sequences using the method described
in Section 2.1. The validation dataset consists of 200 waypoint sequences for each length and is
generated with the same method.

Our proposed model is composed of encoder, decoder, VAE and attention modules. For the forward-
facing trajectory, which includes a yaw reference, the encoder input consists of the waypoints, nor-
malized to [−1, 1]4, as follows:

xin
p,i = [p̃ir/(Lspace/2) cos(p̃iψ) sin(p̃iψ) fEOS], (1)

where p̃ir and p̃iψ are the position and yaw of the i-th waypoint, respectively. The indicator function
fEOS is unity for the final waypoint in the sequence and zero otherwise. For the constant yaw
trajectory, which does not include a yaw reference, the input is reduced to

xin
p,i = [p̃ir/(Lspace/2) fEOS]. (2)

For both types of input, we denote the dimension of each waypoint by dwp. We use a bidirectional
GRU with a hidden layer size of 256 as the encoder (i.e., denc = 2 × 256), and a basic GRU with a
hidden layer size of 256 as the decoder (i.e., ddec = 256).

The VAE estimates the mean µVAE and variance σVAE of the latent vector

zVAE = µVAE + ε� σVAE (3)

with ε ∼ N(0, I). The encoder output, with size denc, is first converted to the decoder size ddec using
a 512 × 256 fully-connected layer and rectified linear unit (ReLU). The mean µVAE and variance
σVAE are each generated from the converted hidden encoder output using separate fully-connected
networks consisting of 256× 32 and 32× 32 hidden layers with ReLU in between.

The decoder is guided using attention information generated from the hidden encoder states. First,
a score value, which represents the correlation between the hidden encoder and decoder states, is
estimated as follows:

ãi,j = vatt tanh(Watt[henc,j ;hdec,i]), (4)

where henc,j ∈ Rdenc is the j-th hidden encoder state and hdec,i ∈ Rddec is the i-th hidden decoder
state. The attention module also uses a weight matrix Watt ∈ Rddec×(denc+ddec) and energy vector
vatt ∈ R1×(ddec). The score values are normalized using the softmax function

ai,j = exp(ãi,j)/
∑
j′

exp(ãi,j′), (5)

and the attention is obtained as the weighted sum of the hidden encoder states

ai =
∑
j

ai,jhenc,j . (6)

The attention information, the previous hidden state, and the previous outputs are concatenated to
obtain the input for the basic GRU decoder. Hence, the input dimension of the decoder is dwp +
denc + ddec. The initial decoder input is the hidden state reconstructed from the VAE and the first
waypoint xin

p,0.

In the first and second training phases, the proposed seq2seq model is trained by supervised learning
using the Adam optimizer with a 1× 10−3 learning rate. This learning rate is decayed by a factor
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of 0.995 at every epoch during the first phase, and by a factor of 0.9999 at every epoch during the
second phase. In the third training step, we further optimize the model using reinforcement learning
and use the same Adam optimizer with a 1× 10−4 learning rate. During this final phase, the learning
rate is decayed by a factor of 0.995 at every epoch. The RL reward decay γ is set to 0.9, and the
action variance σrf is set to 0.1.

B.2 Bayesian Optimization

Before augmenting the training dataset, we select 200 waypoint sequences for each sequence length
to form the BO dataset. For each sample, the time-optimal time allocation is found using BO
based on (6). The basic GPC is used as a surrogate model to approximate the boundary of the
feasibility set PT . Given a set of data points X = {x1, · · · ,xN} with corresponding evaluations
y = {y1, · · · , yN}, GPC assumes a joint Gaussian distribution of the evaluations and the latent
variables f = [f1, · · · , fN ] and predicts the probability P (y∗|y,x∗,X) for a test point x∗ based on
these latent variables. The latent variables and the hyperparameters of the kernel function are trained
by maximizing the marginal likelihood function

P (y, f |X) = ΠN
i=nP (yn|fn)P (f |X) = ΠN

n=1B(yn|Φ(fn))N (f |0,K(X,X)), (7)

where B(x) is the Bernoulli likelihood and Φ(fn) is the cumulative density function used to map
the latent variable fn onto the probability domain [0, 1]. The covariance kernel K(X,X) is built
based on the Gaussian prior assumption. The covariance between X and a test point x∗ is modeled
with the same kernel and the resulting class probability is obtained as

P (y∗|x∗,X,y) =

∫
P (y∗|f∗)P (f∗|x∗,X,y)df∗. (8)

Each evaluation point is selected as the maximum of the acquisition function α(x|D), which bal-
ances uncertainty reduction in the surrogate model against the anticipated improvement in the ob-
jective function, given all data D obtained in previous evaluations. The BO surrogate model is
initialized using 1024 evaluations around an initial solution obtained from minimum-snap optimiza-
tion. For this initialization dataset, we sample points until we have obtained 512 evaluations on each
side of the feasibility boundary.

In the simulated environment, we improve overall optimization efficiency by using multi-fidelity
BO, which combines cheap low-fidelity evaluation with expensive high-fidelity measurements. The
acquisition process is also modified to account for the different fidelity levels. It provides not only
the next evaluation point, but also the fidelity level l of the next evaluation, as follows:

xnext, lnext = arg max
x∈X ,l∈{l1,...,lL}

α(x, l|D), (9)

where D = Dl1 ∪ · · ·DlL contains all past evaluations. The acquisition function itself is modified
by introducing weights based on the evaluation cost at the different fidelity levels. In practice, this
makes the algorithm less likely to select high-fidelity evaluations, so that the overall cost of the
experiments is minimized.

The acquisition function considers exploration and exploitation. For exploration, it selects the most
uncertain sample near the classifier decision boundary to maximize the effectiveness in improving
the surrogate model, as follows:

αexplore(x, l) = −|µl(x)|
σl(x)

Cl, (10)

where µl and σl are respectively the mean and standard deviation of the posterior distribution es-
timated from the surrogate model at the l-th fidelity level. The weight Cl reflects the cost of an
evaluation at fidelity level l. We set CL = 1.0 for the low-fidelity evaluation using the differen-
tial flatness motor speed check, and we set CH = 10.0 for the high-fidelity evaluation using the
6DOF simulation. For exploitation, our implementation uses modified expected improvement with
constraints (EIC) to consider both the probability of success and the corresponding variance. The
resulting acquisition function is given by:

αexploit(x, l) =

{
αEI(x)P̃l(y = 1|x), if P̃l(y = 1|x) ≥ hl
0, otherwise

(11)
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where hl is based on the cost of an infeasible evaluation, P̃l(y = 1|x) = Pl(µl(x)−βσl(x) ≥ 0|x),
and β is a penalty on variance. Since the objective function is deterministic, so is the expected
improvement, i.e., αEI(x) =

∑
i x̄i −

∑
i xi with x̄ the current best solution. For both low-fidelity

and high-fidelity evaluation, we use hl = 1.0 and β = 3.0. The final acquisition function

α(x, l) =

{
αexploit(x, l), if ∃x ∈ X s.t. P̃l(y = 1|x) ≥ hl
αexplore(x, l), otherwise

(12)

performs exploitation only if there is sufficient confidence in its feasibility.

For each single-fidelity BO iteration, 128 samples are acquired for evaluation based on the reference
motor speeds from the differential flatness transform. For multi-fidelity BO, 64 samples are acquired
in differential-flatness-based low-fidelity iterations and at most four samples are acquired in high-
fidelity iterations using the 6DOF simulation. In order to curb the computational cost, we limit BO
to 30 iterations for each waypoint sequence. As described in Section 4, the fully-trained seq2seq
model outperforms the BO labels, showing that BO may not always be converged at termination.
Despite this lack of convergence, BO successfully guides the final RL learning phase and attains
significant improvements when compared to minimum-snap optimization, as shown in Table 1 and
Fig. 1.

Table 1: Average trajectory time reduction for BO labels compared to minimum-snap labels.
Feasibility constraint Differential flatness 6DOF Simulation

Yaw reference Constant Forward-facing Forward-facing

Reduction 5.375 % 4.746 % 5.552 %
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Figure 1: Trajectory time reduction for BO labels compared to minimum-snap labels.
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Appendix C Seq2Seq Learning Results

This appendix contains detailed experimental results. As described in Section 4, we trained two
types of models: (i) using analytical feasibility evaluations based on the reference motor speeds
obtained from the simplified quadrotor dynamics differential flatness transform, and (ii) using nu-
merical evaluations of trajectory-tracking accuracy in a six-degree-of-freedom (6DOF) flight dy-
namics simulation. For the training with differential flatness feasibility constraints, we consider
two different datasets: one with only waypoint positions and no yaw (i.e., constant yaw at zero),
and one with a tangential (i.e., forward-facing) yaw reference. Hence, we evaluated our algorithm
in three different training setups: constant yaw trajectory with differential flatness feasibility con-
straint, forward-facing yaw trajectory with differential flatness feasibility constraint, and forward-
facing yaw trajectory with 6DOF simulation feasibility constraint. Figure 2 shows the trajectory
time reduction achieved in each of these training setups.
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Figure 2: Trajectory time reduction for optimized seq2seq trajectories compared to baseline
minimum-snap trajectories for the validation dataset.

In Fig. 3, we compare the average improvement for several trajectory properties, namely the number
of waypoints, the trajectory length of the baseline minimum-snap trajectory, and the ratio of the
smoothness cost of the optimized seq2seq trajectory and the baseline minimum-snap trajectory.
Aligning with intuition, trajectories with great length and a large number of waypoints provide
more opportunity for improvement. We also observe that in most cases the optimized trajectory has
an increased smoothness cost (i.e., > 1 in Fig. 3), indicating a more aggressive trajectory.
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Figure 3: Trajectory time reduction for optimized seq2seq trajectories compared to baseline
minimum-snap trajectories plotted against trajectory properties.

Our proposed model chiefly relies on two mechanisms to reduce the trajectory time. It generates
lengthier paths that can be flown at a higher speed or lowers the flight speed to allow tighter turns.
The application of these mechanisms and the corresponding trajectory time improvement are shown
in Fig. 4. For the trajectories with constant yaw subject to differential flatness feasibility constraints
(Fig. 4a), we observe that the trained model tends to generate longer paths that enable vehicle to fly
at a higher speed. When using the 6DOF simulation to check feasibility (Fig. 4c), the model learns
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that the flight controller can stabilize the trajectory tracking within acceptable error bounds, even if
the motor speeds are somewhat saturated. Learning the controller performance allows the model to
further exploit the vehicle capabilities by planning tighter paths between waypoints, which results
in more aggressive turns and lowers the trajectory time.
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0.80.91.01.11.21.3
Ratio of length

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ra
tio

 o
f m

ax
 sp

ee
d

forward-facing + diff flat

-10

0

10

20

30

Ti
m

e 
re

du
ct

io
n 

[%
]

(b) Forward-facing + Diff. flat

0.80.91.01.11.21.3
Ratio of length

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ra
tio

 o
f m

ax
 sp

ee
d

forward-facing + simulation

-10

0

10

20

30

Ti
m

e 
re

du
ct

io
n 

[%
]

(c) Forward-facing + Simulation

Figure 4: Average time reduction over the trajectory length ratio and maximum speed ratio between
the baseline and optimized trajectories.

Table 2, 3, 4, and Fig. 5, 6, 7 list and visualize the trajectory time reductions along with other
data from the three different training setups. We compare the duration, length, and top speed of the
trajectories obtained with the baseline minimum-snap method to those obtained with our method.
For the training in simulation, we also compare the seq2seq model trained with the differential
flatness feasibility constraints to the seq2seq model trained with the 6DOF simulation feasibility
constraints.

Table 2: Trajectory time reduction by the seq2seq (s2s) model relative to minimum-snap (MS)
trajectories for the validation dataset with constant yaw and using the differential flatness feasibility
constraints. The bottom eight rows contain data for the sample (i.e., the waypoint sequence and
corresponding trajectories) at the percentile rank.

Percentile 95th 75th 50th 25th 5th 1st
Time reduction 14.99 % 11.78 % 7.59 % 4.19 % 0.73 % -3.63 %

Waypoints 9 5 7 9 6 10

Duration MS 11.4 s 6.9 s 8.9 s 12.4 s 7.0 s 12.9 s
s2s 9.6 s 6.1 s 8.2 s 11.9 s 6.9 s 13.4 s

Top speed MS 6.0 m/s 5.1 m/s 9.4 m/s 6.4 m/s 8.2 m/s 8.3 m/s
s2s 8.5 m/s 6.8 m/s 13.3 m/s 7.3 m/s 7.9 m/s 8.4 m/s

Length MS 43.5 m 21.3 m 37.6 m 50.5 m 23.9 m 55.0 m
s2s 43.4 m 22.9 m 47.0 m 50.7 m 23.6 m 60.2 m

Smoothness cost (s2s / MS) 2.3 1.8 1.7 1.1 1.0 1.3
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(a) 95th percentile (14.99 % improvement)
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(b) 75th percentile (11.78 % improvement)

-8 -6 -4 -2 0 2 4 6 8
-8
-6
-4
-2
0
2
4
6
8 Seq2Seq Traj

-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0 2 4 6 8
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0 speed profile [m/s]

0 1 2 3 4 5 6 7 8
Time [s]

0

250

500

750

1000

1250

1500

1750

M
ot

or
 sp

ee
d 

[ra
d/

s]

motor 0
motor 1
motor 2
motor 3

-8 -6 -4 -2 0 2 4 6 8
-8
-6
-4
-2
0
2
4
6
8 MinSnap Traj

-5.0

-2.5

0.0

2.5

5.0

Al
tit

ud
e 

[m
]

0.0 2.5 5.0 7.5
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0 speed profile [m/s]

0 2 4 6 8
Time [s]

200

400

600

800

1000

1200

1400
M

ot
or

 sp
ee

d 
[ra

d/
s]

motor 0
motor 1
motor 2
motor 3

(c) 50th percentile (7.59 % improvement)
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(d) 25th percentile (4.19 % improvement)
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Figure 5: Comparison of the path, speed profile, and reference motor speeds of the minimum-snap
baseline trajectory and the optimized seq2seq trajectory with constant yaw and using the differential
flatness feasibility constraints.

Table 3: Trajectory time reduction by the seq2seq (s2s) model relative to minimum-snap (MS)
trajectories for the validation dataset with forward-facing yaw and using the differential flatness fea-
sibility constraints. The bottom eight rows contain data for the sample (i.e., the waypoint sequence
and corresponding trajectory) at the percentile rank.

Percentile 95th 75th 50th 25th 7th 1st
Time reduction 14.94 % 8.88 % 4.89 % 2.89 % 1.08 % -3.79 %

Waypoints 13 12 5 14 11 7

Duration MS 22.8 s 15.8 s 7.1 s 26.8 s 15.9 s 9.1 s
s2s 19.4 s 14.4 s 6.7 s 26.1 s 14.9 s 9.4 s

Top speed MS 6.7 m/s 8.8 m/s 6.3 m/s 6.9 m/s 6.9 m/s 9.1 m/s
s2s 8.3 m/s 8.6 m/s 6.4 m/s 8.3 m/s 7.7 m/s 8.4 m/s

Length MS 83.4 m 71.9 m 23.2 m 115.5 m 62.1 m 38.5 m
s2s 87.8 m 67.1 m 21.9 m 122.1 m 67.7 m 39.5 m

Smoothness cost (s2s / MS) 1.6 0.8 1.1 1.2 1.2 1.2
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(f) 1st percentile (-3.79 % improvement)

Figure 6: Comparison of the path, speed profile, and reference motor speeds of the minimum-snap
baseline trajectory and the optimized seq2seq trajectory with forward-facing yaw and using the
differential flatness feasibility constraints.

Table 4: Trajectory time reduction by the seq2seq (Sim) model relative to minimum-snap (MS)
trajectories for the validation dataset with forward-facing yaw and using the 6DOF simulation fea-
sibility constraints. The bottom four rows contain data for the sample (i.e., the waypoint sequence
and corresponding trajectory) at the percentile rank. The trajectory obtained by the seq2seq model
using the the differential flatness feasibility constraints (DF) is listed as well.

Percentile 95th 75th 50th 25th 13th 1st
Time reduction 20.52 % 13.50 % 12.06 % 2.34 % 0.36 % -9.18 %

Waypoints 7 13 9 14 8 8

Duration MS 15.0 s 22.7 s 19.3 s 26.3 s 11.1 s 13.4 s
DF 13.1 s 22.4 s 17.6 s 28.0 s 11.5 s 14.1 s
Sim 12.0 s 19.6 s 17.0 s 25.6 s 11.0 s 14.6 s

Top speed MS 6.0 m/s 5.3 m/s 6.4 m/s 6.4 m/s 7.4 m/s 7.7 m/s
DF 7.6 m/s 6.6 m/s 7.2 m/s 5.9 m/s 8.4 m/s 7.1 m/s
Sim 7.6 m/s 6.3 m/s 6.8 m/s 6.3 m/s 6.8 m/s 6.5 m/s

Length MS 51.2 m 73.7 m 67.8 m 88.2 m 46.0 m 54.7 m
DF 54.3 m 76.9 m 72.3 m 94.6 m 49.0 m 56.4 m
Sim 51.1 m 74.7 m 67.2 m 91.0 m 43.7 m 55.3 m

Smoothness cost (Sim / MS) 1.1 1.4 1.2 1.1 0.9 1.1
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(a) 95th percentile (20.52 % improvement)
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(b) 75th percentile (13.50 % improvement)
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(c) 50th percentile (12.06 % improvement)
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(f) 1st percentile (- 9.18 % improvement)

Figure 7: Comparison of the path, speed profile, and reference motor speeds of the minimum-snap
baseline trajectory and the optimized seq2seq trajectory with forward-facing yaw and using the
6DOF simulation feasibility constraints.
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Appendix D Real-World Flight Experiments

We randomly selected ten waypoint sequences to test in flight experiments using a quadrotor. Figure
8 shows the paths of the corresponding baseline minimum-snap trajectories and optimized seq2seq
trajectories. During the flight experiments, we uniformly scale the corresponding time allocations
until the tracking error constraints are active. Table 5 contains the trajectory time reduction of the
resulting seq2seq trajectories.
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Figure 8: Minimum-snap (MS) and seq2seq (s2s) trajectories evaluated in real-world flight experi-
ments.

Table 5: Length, top speed, and duration of minimum-snap (MS) trajectories with simulation (sim)
and real-world (exp) feasibility constraints, as well as trajectory time improvement by seq2seq (s2s)
model.

Trajectory 1 2 3 4 5 6 7 8 9 10

Length [m] MS sim 26.5 30.5 30.3 44.0 47.3 41.3 52.7 66.1 50.1 70.4
s2s sim 22.4 29.2 25.0 35.9 36.4 35.4 49.1 56.3 42.0 59.6

Top spd. [m/s] MS sim 6.8 6.5 5.6 6.8 6.5 6.4 6.2 6.5 7.7 6.7
s2s sim 7.5 6.7 5.6 5.8 6.4 5.6 5.8 6.4 6.5 6.2
MS exp 8.4 8.3 6.2 8.5 6.7 7.0 8.4 7.7 7.8 7.1
s2s exp 8.5 8.1 6.0 7.3 5.9 6.3 7.9 7.1 6.6 6.9

Duration [s] MS sim 7.2 9.7 9.3 13.2 13.0 12.9 18.4 18.9 16.4 21.5
s2s sim 6.4 9.2 8.1 12.0 11.3 11.4 16.9 16.6 15.0 17.4
MS exp 5.8 7.7 8.4 10.6 12.7 11.7 13.6 15.8 16.2 20.2
s2s exp 5.6 7.6 7.5 9.5 12.2 10.1 12.3 15.0 14.8 15.8

Imp. [%] s2s sim 11.9 5.6 13.7 9.4 13.5 11.3 8.1 12.0 8.6 18.7
s2s exp 4.3 1.3 10.5 10.4 4.2 14.0 9.2 5.2 8.9 22.1
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