Table 1: Controller Hyperparameters

Environment
Parameter PNGRID PNRAND FRANKA
Horizon (H) 32 64 32
Temperature (3) 1032 1032 104

Init. cov. (o2) 10 100 0.1

Step size () 0.7 1 1

MPPI Spline knots (1) None None

Init. cov. (02) 10 10 0.1
FlowMPPI Latent cov. 1 1 0.1

Latent mean penalty (\) 107 1073 1
NFMPC | Latent cov. 1 1 0.1

A Appendix
A.1 Computational Graph Visualization
We visualize the computational graph of a sin- x ” § — .
gle episode in Figure 5. The f ’ x1
, , and _’E > 7, p— |-
)

2{)

are colored blue, indicating that they
are differentiable modules. The Z(,»)l_.@
is colored in purple, to indicate that we ’

A
are approximating the gradient as above, which N
can be implemented as a custom backwards pass
Sim w(i

in autodifferentiation software. All of the paths o
of the graph through which the gradients flow Uy >
during the backwards pass are colored in purple. X
The , colored in green, is solely
used to compute the weights for the MPPI up-
date, wh!ch are reused in the backwards pass. |E] oreeate [frroinate 7] enonmen ¢ [smuator __:“M‘”'El mitle
At each time step, the updated mean g, defines

a latent Gaussian, which is used to generate con- Figure 5: Computational graph of an episode
trols applied to the actual which illustrates the interaction between the

A0

u, |

A A.

Loss

denoted by the yellow box. Note that both the learned
latent variables and controls are being passed to the y of the latent mean
the module. This is because during the (o and the ’

forward pass, we can simply take the weighted
sum of latent variables. However, during the backward pass, we have to re-run the network with the
controls to compute the approximate gradients, as discussed in Section 3.4.

A.2 Experimental Details

Controller Details. We use a modified version of the MPPI implementation by Bhardwaj et al. [4],
which is implemented in PyTorch [28]. For the MPPI baseline, we perform covariance adaptation of
the full covariance matrix across the horizon and control dimensions. The initial covariance matrix is
always an identity matrix scaled by an initial covariance scalar hyperparameter o2. Additionally, this
implementation uses Halton sequences [29] for generating control sequence samples and smooths the
sampled trajectories with n-degree B-splines in some tasks. When B-splines are used, we sample
the Halton sequence once at the beginning of a rollout and then transform it using the mean and
covariance of the Gaussian distribution. Additionally, we ensure that the mean of the Gaussian is
always in the set of samples. All hyperparameters of the controllers were chosen via a grid search and
the final choices for each task are listed in Table 1. When it improves performance, we warm-start
the controllers prior to the first time step by running the MPC update for 100 iterations to ensure
convergence. Additionally, we normalize the total trajectory costs prior to computing the softmax
weights, as discused by Okada and Taniguchi [10].

11

In general, we use the same settings for NFMPC and FlowMPPI that were found in this grid search.
However, we do not performance covariance adaptation on the latent Gaussian and assume the flow
learns how to adjust sample spread as needed. Additionally, we take the previous mean in the control
space, shift it forward, and add it to the set of control samples at the next time steps. While the learned
latent shift model handles this well in most cases, we found adding this sample sped up training
and slightly improved performance. We always use Halton sequences to sample from the latent
Gaussian, but never use B-splines. For FlowMPPI, we always use half the samples for sampling from
the NF and half for the Gaussian perturbations on the current control-space mean. We do perform
covariance adaptation on the perturbation Gaussian and re-tune its initial covariance. Finally, we have
the additional A parameter, which penalizes the latent Gaussian samples from deviating too much
from the projection of the current control-space mean into the latent space.

Planar Robot Navigation. The planar navigation environment has a state space of z; € R*, which
consists of the robot’s 2D position, (p, py), and velocity, (v, vy), and a control space of u; € R?,
which are the robot’s 2D acceleration commands. The robot has double-integrator dynamics with
additive Gaussian noise on the controls, as described by the following equations:

D 1 0 At O D 0 0

, 01 0 At 0 0
5‘; =lo 0 1 0 gj)z + At 0 (ug +wy), wy~ N(O,UI), (15)

N 0 0 O 1 vy, 0 At
where we set At = 0.1 and 0 = 1. Additionally, we added acceleration limits of v = —10 and

4 = 10 for both directions. The cost function consists of the Euclidean distance to the goal, a
signed-distance field representation of the obstacles, and a term which encourages the robot to stay
within the bounds of the map, and a quadratic control penalty:

C(Ia u) = wgoale - xg”% + wboundcbound(xt) + wcollSDF(prmpy) + wctrl”“”%? (16)

where we define the map bound cost as:

Chouna(r) = Y I[(pi > pi) || (pi < p,)]min ((pi — §:)°, (i — p,)%)- (17)
i€ (@)

In the above equations, x, is the goal state, p; and p, are the upper and lower bounds of the map
for each coordinate, and SDF(+,) indexes an image which represents the signed-distance field. We
mainly focus on the PNRANDDYN task, which involves steering the robot towards a goal position
while avoiding eight dynamic obstacles. While the obstacles drift randomly in the environment with
Gaussian steps, their positions are clipped to be within map bounds. We do not update their position
if the perturbation would bring it too close to the robot or goal location to prevent collisions which
the robot cannot react to in time to avoid. An episode lasts for 200 time steps and is considered
successful if the agent reaches the goal without colliding into any obstacles. In Appendix A.3, we
also consider a static version of this environment (PNRAND), which simply places the eight obstacles
randomly in the environment, and a version which arranges the obstacles in a fixed grid (PNGRID).

Franka Panda Arm. The Franka Panda arm environment defines the robot state in joint space with
x; € R?!, consisting of each joint’s angle 6;, angular velocity 6;, and angular acceleration 0;. Its
control space is u; € R, which are the angular acceleration commands for each joint. The dynamics
are deterministic and implemented by the Nvidia Isaac Gym simulator [30]. However, the MPC
controllers use a simpler kinematic model defined by Bhardwaj et al. [4], which is implemented in a
batch fashion by leveraging its linearity:

O =u, O=0,+5(1)diag(At)®, © =06, + S;(1)diag(At)O, (18)

where the bold symbols indicate that they consist of values along the entire horizon, ® includes the
angles for all joints, S;(1) is a lower triangular matrix filled with 1, and At is a vector of time steps
across the horizon. We use smaller time steps earlier along the horizon and larger ones for later time
steps. By implementing the dynamics in batch, we avoid iteratively unrolling the dynamics, speeding
up controller computation significantly. For computing cost, we also require the Cartesian poses X,
velocities X, and accelerations X of the end-effector. These are obtained via:

X =FK(©), X =J(©)0, X=.,J(©)0+J0)6 (19)

12

where FK(©) are the forward kinematics and .J(©) is the kinematic Jacobian. The cost function is
a weighted sum of a number of terms, as defined by Bhardwaj et al. [4], which includes: distance
of end-effector to the goal pose cpose, a time varying velocity limit cost ¢, that enables stopping
within the specified horizon, a joint limit cost ¢4y, @ manipulability cost ¢,qnip Which encourages
the arm to avoid singular configurations, a self-collision cost cse; f—co11, and a obstacle collision cost
Ceo11- The overall final cost function is then:

C(‘T, u) = wpcpose(w) + wscstop(x) + chjoint(x) + wmcmanip(x) + wc(cselffcoll(x) + Ccoll(x))- (20)

The self-collision cost is implemented with a neural network that predicts the closest distance between
the links of the robot given a configuration. The collision cost is a binary cost which uses a learned
collision checking function that operates directly on raw point cloud data and classifies if a robot link
is in collision. See Bhardwaj et al. [4] for further details about each of the individual cost terms. For
the FRANKAOBSTACLES task, we control the 7 degree-of-freedom (DOF) Franka Panda robot arm
and steer it towards a target goal from a fixed starting pose while avoiding a single pole obstacle. The
obstacle and goal positions are randomized at the beginning of each episode, which lasts for 600 time
steps. An episode is considered successful if the end effector reaches the target position under the
time constraints while avoiding the obstacle. In Appendix A.4, we also consider a simplified version
which has no obstacles (FRANKA).

Architectural and Training Details. All NFs for both NFMPC and FlowMPPI were imple-
mented in PyTorch and contain affine coupling layers which use multilayer perceptrons (MLPs)
for both the scale and translation terms. The scale and translation networks use Tanh and ReLLU
activations, respectively. We also employ layer normalization [31] in these networks to help prevent
overfitting. Interestingly, we found that adding batch normalization between each layer, as proposed
by Dinh et al. [18], actually hurt performance and was therefore excluded. In all environments, we
use 5 RealNVP blocks for the NF, and each MLP has a hidden dimensionality of 128 neurons. For
the PNGRID, FRANKA, and FRANKAOBSTACLES tasks, the shift model is also an MLP with a
single hidden layer of 128 neurons and a ReL.U activation function. In PNRAND and PNRANDDYN
the shift model is implemented as an LSTM with a hidden dimensionality of 128 neurons. For a
fair comparison, the same architecture was used for both FlowMPPI and NFMPC. We trained all
networks with the Adam optimizer [32] using a learning rate of 10~%.

To train the NFMPC variants, we follow-
ing the training procedure in Algorithm

Algorithm 1: Training Loop

1, which is carried out training over D Input: Environment d~ist. C, initial state dist. p,
episodes. In each episode d, we sample an initial param. 6o, Ao
environment from C and initial state from p. Parameters: # episodes D, episode length 7', #
We then perform our rollouts by sampling samples N
~(1:N) . ford=1,2,...,Ddo

latent controls £, , passing them through Sample environment ¢ ~ C(-)
the normalizing flow to get controls 11§1:N), Sample initial state 2o ~ p(-|c)
and then applying them to our approximate Initialize episode loss Ig < 0
dynamics model and cost function to get fort =0,1,..., Tk —1do :

((@, 2¢, we) Y Rollout(zt, ¢, Or, M)

weights wtl:N). These variables are used to
update the latent distribution of the policy
to 6;. Next, we can either sample a control
from the policy or use a control correspond- Apply control to system w41 ~ f(x+, ur)
ing to the latent mean. We apply this control Shift parameters 0¢11 = Px, (01, ¢)

to the true system and shift the latent dis- Compute loss J; (01, Aa; 1,)

tribution parameters forward with the shift o Accumulate loss £q < £q + J

model. Finally, we compute the loss for the . .

current time sgep, accuml?ﬂate the loss to our Update Ay to Agy1 with V\£g using SGD
running sum, and repeat for 1" time steps.
Once the episode is complete, we update Ay
using the gradient of the loss and carry on to the next episode. Every 100 environments, we test the
controller on 10 held out environments and save the current model if it outperforms the previous best
on this validation set. While this introduces a variable number of total episodes used to train the
models, we generally find convergence between 2000 and 7000 episodes.

Update 0 to 6; using latent MPPI update
Sample u; ~ g, x, OF U — h;dl(ut;)

end

In contrast, to train FlowMPPI, we do not actually run an episode. Instead, we generate the
environment and take a gradient step on the initial distribution of the flow conditioned on the

13

1 MPPI BN FlowMPPI I NFMPC

100 e e = =
1012
80 1010
5 B 108
& 60 — 8
@ b
ot 2w H
(o] o
A 40 =
101
20
" Dl BB ca cog cia
(
) 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 6: Success rate and cost distribution on the PNGRID task across a different number of samples.

NFMPC FlowMPPI MPPI

Figure 7: Visualization of trajectories in the PNGRID task across multiple random seeds for a fixed
environmental layout.

environmental information. We train FlowMPPI over 10000 randomly generated environments for
each task. We achieved the best performance by initializing the flow with the FlowMPPI solution,
and then refining the flow and learning the shift model jointly as above. When we condition the NF
on additional information, this is simply appended to the current input of each shift and translation
network directly. This conditional information includes start and goal locations for PNGRID and
FRANKA and start, goal, and obstacle locations for PNRAND and FRANKAOBSTACLES. For
PNRANDDYN we use the current state instead of the initial location, which was found to improve
performance for all controllers. For the obstacles, the conditional information is the Cartesian
coordinates of each object of interest stacked together in a vector.

A.3 Additional Planar Navigation Experiments

PNGRID. We consider a variant of the planar navigation task that involves static obstacles arranged
in a grid (PNGRID), described in Appendix A.2. All other task details are the same as in the
PNRANDDYN task, except that we use an unconditional NFMPC controller. We quantitatively
compare all controllers in Figure 6 and find that NFMPC consistently matches or outperforms both
MPPI and FlowMPPI at each sample quantity in terms of both success rate and average trajectory
cost of successful trajectories. We also find that NFMPC scales more gracefully than MPPI as the
number of samples is reduced. In fact, we found that while FlowMPPI improves over MPPI at
higher sample counts, it actually performs significantly worse with fewer samples. This is in contrast
to the results on more complex environments considered in the main paper, in which FlowMPPI
generally outperforms MPPI at lower sample counts as well. This is potentially because in the
standard implementation of FlowMPPI, half of the samples come from the NF and the other half

14

Figure 8: Visualization of a trajectory and top samples from (top) NFMPC, (middle) FlowMPPI,
and (bottom) MPPI on the PNGRID task.

are Gaussian perturbations of the current control-space mean. Initially, the samples coming from the
NF provide a good initialization for the control distribution mean. However, as the latent Gaussian
distribution used by the NF is never updated, half of our samples are always coming from this same
distribution. When the environment or task is more complex, the conditioning information provided
to the NF is enough to transform the samples in a useful way. However, in this simple environment,
our hypothesis is that as the robot moves in the environment, these samples may cease to be as useful
or informative. We then have to rely on the other half of samples coming from Gaussian perturbations
of the control-space mean to do most of the work. As such, we effectively have half the budget of
samples to work with than MPPI would, as the samples from the NF potentially do not provide much
useful information. Meanwhile, because NFMPC is trained recurrently and updates are performed in
the latent space, it can better exploit structure in the environment to transform samples.

To better understand what NFMPC is doing differently, we superimpose 32 different trajectories
with fixed start and goal positions using each controller in Figure 7. We find that both MPPI and
FlowMPPI always select the same path through the environment. Meanwhile, NFMPC is able
to discover different paths through the environment, allowing it to better react to the stochastic
perturbations that knock it off the current plan and improve performance. Additionally, we visualize
the resulting trajectories and top samples drawn from the distributions for all controllers on one of
the validation environments in Figure 8. As we would expect, the initial trajectory from FlowMPPI
is better than those of the other two controllers, which basically lay in straight lines in front of the
robot. However, NFMPC is able to discover a slightly faster route to the goal as it proceeds in the
environment. The baseline MPPI controller takes a similar, but slightly longer, route to the goal.
Additionally, it takes a longer time to ramp up its velocity compared to the other two controllers,
contributing to its sub-optimal performance.

PNRAND. Next, we consider a variant of PNRANDDYN in which the eight obstacles are static
(PNRAND). We consider the case where we condition the NF on obstacle locations, initial state,
and goal position. However, it is important to note that we do not condition the shift model, as
we found this consistently hurt performance. In Figure 9, we display the quantitative results and
find that NFMPC performed about on par with FlowMPPI, which outperformed MPPI. Unlike on
the PNGRID task, both NFMPC and FlowMPPI scale similarly with a reduction of samples and
better than MPPI. This can be partly attributed to the fact that the obstacles are more spaced out and
there are more "holes” in the environment than in the grid. Therefore, it is easier to avoid collisions,
possibly contributing to the higher success rates when the controller has access to fewer samples.
Moreover, conditioning on the obstacle locations provides the NF more information, which can be
exploited without updating the latent distribution.

We again visualize the trajectories and top samples for all controllers on a validation environment
in Figure 10. First, we note that the samples in FlowMPPI appear to be better spread around in
the environment to search for good paths towards the goal. Meanwhile, NFMPC seems to have
all top samples directed in one direction. All models seem to find the same path, with MPPI
oscillating more near the goal and reaching the goal more slowly than NFMPC and FlowMPPIL.
The similar performance of NFMPC and FlowMPPI can be partially attributed to the fact that
all we may really need to succeed in this environment is a good initial trajectory which steers us

15

1 MPPI BN FlowMPPI] NFMPCJ

100

40
30 35
@ - 30
& 60 8
P o5
wn —
8 3
(o] o
A 40 =2
15
20
10
0
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 9: Success rate and cost distribution on the PNRAND environment across a different number
of samples.

8 i =] = = = u = u
u
= /
= u
ZJ»{\ a
= [u]]]]]]
[
=
S
)
=
u u

= CRL R
o] . }\‘ n

m w7 g

Figure 10: Visualization of a trajectory and top samples from (top) NFMPC, (middle) FlowMPPI,
and (bottom) MPPI on the PNRAND task.

towards the goal. Whether we refine this trajectory with a learned latent shift model or with Gaussian
perturbations in the control space does not appear to make much difference in performance. However,
in PNRANDDYN, we demonstrated that there is a significant advantage to our approach, indicating
that dynamic environments may be a good application for NFMPC.

Finally, in order to evaluate the benefit of conditioning the NF, we compare the performance of
NFMPC with and without conditioning the flow on PNRAND in Figure 11. We find that the
conditional model consistently outperforms the unconditional model in terms of median cost, with
the gap growing at reduced sample counts. This may be because the dynamics in PNRAND are rather
simple, and there may not be much general structure for the unconditional model to exploit since the
obstacle locations are entirely random. Therefore, while the unconditional model does fairly well,
conditioning the flow, and not the shift model, seems to enable further gains, even in this simple task.

PNRANDDYN. In addition to the experiments in the main paper, we also performed additional
ablation studies. Specifically, we also considered training an unconditional model, as we did before
in the PNRAND task. Moreover, we explored transferring controllers trained in the PNRAND task to
this dynamic version of the environment. We plot the quantitative results from these ablation studies
in Figure 12. Again, we find that conditional models consistently outperform unconditional ones,
with the gap in performance more pronounced. Not only is there a reduction in median cost for
unconditional controllers, but it sometimes fails in environments in which its conditional counterpart
succeeds. Transferring the models trained in PNRAND works surprisingly well at 1024 samples.
However, at lower sample counts, there is a more pronounced difference in the transferred controllers

16

[NFMPC (Uncond) [EEE NFMPC (cond)]

100
25.0

22.5
80

— Do
ot =
() [==]

Total Cost
5
(=}

Success Rate

40

_
o
ot

20

=
o

1

I3t

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 11: Comparison of unconditional and conditional models on the PNRAND environment across
a different number of samples.

3 NFMPC (Uncond, No Obs) 0 NFMPC (Cond, No Obs) I NFMPC (Uncond) I NFMPC (Cond)J

100 — 50

Success Rate
Total Cost

40

20

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 12: Comparison of unconditional and conditional models on the PNRANDDYN environment
across a different number of samples when trained in an environment with no obstacles (PNRAND)
and retrained with obstacles present.

to those specifically trained in the dynamic environment. Therefore, it appears that controllers are
more efficient at exploring the environments they are trained on, and unsurprisingly, using more
samples can partially overcome this gap.

A.4 Additional Franka Experiments

FRANKA. We consider a variant of the FRANKAOBSTACLES task which involves no obstacles, just
a target goal, which we call FRANKA. We plot our quantitative results in Figure 14 and find that
NFMPC again consistently matches or outperforms MPPI and FlowMPPI at each sample amount.
In fact, NFMPC always achieves a 100% success rate at all sample counts, while both MPPI and
FlowMPPI significantly drop in performance at lower amounts of samples. Moreover, FlowMPPI
sometimes actually performed worse than MPPI, indicating that conditioning on just goal location
does not help as much in this more complex scenario.

FRANKAOBSTACLES. In addition to the results in the main paper, we perform an additional abla-
tion study in which we again compare an unconditional and conditional model on the FRANKAOB-
STACLES environment. We also show the performance of transferring the unconditional model

17

1 MPPI BN FlowMPPI] NFMPC]

100

80
10°

60

40
10°

20

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Success Rate
Total Cost

Figure 13: Success rate and cost distribution on the FRANKA environment across a different number
of samples.

1 NFMPC (Uncond, No Obs) I NFMPC (Uncond, Retrained) I NFMPC (Cond) J

100
70
60
3 .
& 50 8
-
§40 '_*5 .
2 10
30
20
10
0
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 14: Comparison of an unconditional model trained with and without obstacles to a conditional
model in the FRANKAOBSTACLES environment across a different number of samples.

trained on the FRANKA environment without obstacles to an environment which contains the single
pole obstacle. At 1024 samples, the conditional model performs the best in terms of success rate.
Surprisingly, the unconditional model trained without obstacles performs best in terms of median cost
and scales better to fewer samples. Therefore, while the conditional model more often finds a feasible
path to the goal, the unconditional model is better able to exploit structure across environments to
find lower cost trajectories. One possible explanation is that because the unconditional model is
trained without knowing the specific obstacle locations, it has to be more robust to variation in the
environment. This also shows that transferring the learned distribution to novel environments is
possible. However, since we only have a single static obstacle, it is not clear if these findings would
generalize to more complex environments.

Breakdown of Trajectory Cost. We would like to better understand how the learned controllers
improve upon the baseline on the FRANKAOBSTACLES task. As discussed in Appendix A.2, the
cost function for the Franka tasks is composed of multiple terms. By inspecting the averages
for each term, we hope to gain insight into the learned sampling distributions. Briefly, we con-
sider a manipulability cost (Manip), which encourages the arm to avoid singular configurations, a
self-collision cost (Self), an obstacle collision cost (Obstacle), and a distance-to-goal cost (Goal).

18

[NFMPC BB NFMPC (No Shift) EEEE NFMPC (No Shift, Retrained)J

00 7 M i

80

Success Rate
Total Cost

40

20

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
Num. Samples Num. Samples

Figure 16: Success rate and cost distribution on the FRANKA task with (NFMPC) and without
(NFMPC (No Shift) and NFMPC (No Shift, Retrained) the learned shift model.

The cost breakdown for these terms in shown
in Figure 15. The baseline MPPI controller
achieves the lowest manipulability cost. Since
this term is not weighted as highly, it makes 10°
sense that training the normalizing flow would — — —
focus on minimizing terms which were more
heavily weighted. Meanwhile, FlowMPPI
achieves the lowest self-collision cost, which
may be due to the fact that it starts off with a
better initial plan. However, NFMPC trained
with obstacles (NFMPC (Obs)) achieves the
lowest obstacle collision and distance-to-goal
cost. One possible explanation for this improve-
ment is that, because we train NFMPC with MPPI FlowMPPI (NE%F;)% “'(E“SSC
BPTT, we are potentially able to account for

errors which arise due to the inaccurate model. pioyre 15: Breakdown of different cost terms

Additionally, learning the shift model may be o1 each controller executing the FRANKAOBSTA-
an important component to this improvement, 1 g task.

which we explore below. Finally, we note that
NFMPC (Obs) is better than NFMPC trained without obstacles (NFMPC (No Obs)) in all cost
terms except the manipulability cost, as it is in distribution for the task.

[Manip I Self [Obstacle — Goal]

109

Average Cost

10*

Shift Model Ablation. One of our main contributions which sets us apart from prior work is that
we learn a latent shift model and train the controller as a recurrent network. To determine the impact
of this choice, we consider an alternate scenario where the control sequence is instead shifted in
control space. That is, we shift the mean in control space, as in the baseline MPPI controller, and
then run the flow backwards to infer the corresponding latent mean, which is used to bootstrap the
next iteration. We consider two cases: 1) taking a pre-trained controller and removing the shift
model (NFMPC (No Shift)) and 2) retraining the controller entirely from scratch without the shift
model (NFMPC (No Shift, Retrained)). In Figure 16, we show the results of this ablation study on
the FRANKA task. Removing the shift model strictly hurts performance, even when we retrain the
normalizing flow from scratch. Moreover, retraining the flow actually results in worse performance
than simply removing the shift model from the pre-trained controller. This implies that training the
entire controller with BPTT allows it to discover lower-cost trajectories to the goal.

A.5 Performance Overhead of Normalizing Flow

We measured the average change in wall clock time across different amounts of samples for NFMPC
and FlowMPPI compared to the baseline MPPI implementation on our NVIDIA Titan V GPU. For

19

the Planar Robot Navigation and Franka Panda Arm experiments, the average change is 1.61x and
1.91x, respectively. Moreover, compared to MPPI with 1024 samples, the change in wall clock
time for NFMPC and FlowMPPI with 16 samples is approximately 1.01x and 1.14 X, respectively.
Therefore, the introduction of the normalizing flow (NF) has a notable impact on wall clock time for
both methods. However, this overhead is expected and does not prohibit either method’s utility in the
real world. And there are still clear performance advantages of NFMPC over the baselines in terms
of success rate and average trajectory cost for a given sample amount.

Furthermore, the performance of MPPI reported in the paper and the above timing comparisons are
when the optimization is run for a single iteration per time step. However, the performance of MPPI
generally improves with an increased number of iterations at the cost of an increased runtime. For
instance, we compare the performance of MPPI run for 3 iterations per time step with NFMPC run
for a single iteration, both using 1024 samples. In the FRANKA task, we can reduce the average
trajectory cost of MPPI to be only 12% worse than NFMPC, rather than the previous 19%. When
we introduce obstacles for the FRANKAOBSTACLEStask, MPPI with 3 iterations can actually match
the success rate of NFMPC, albeit with a worse average trajectory cost. However, in this case,
NFMPC actually results in an average reduction of wall clock time by 24.8%. Similarly, for the
PNGRID task, MPPI with 3 iterations reduces the average trajectory cost to be only 10% worse than
NFMPC, rather than the previous 40%. However, this again comes at the cost of increased runtime,
as NFMPC reduces the average wall clock time by 26.8%. Therefore, NFMPC allows us to surpass
the performance of MPPI run with more iterations while reducing the required runtime.

Additionally, NFMPC has substantial runtime benefits over FlowMPPI due to its improved scaling.
For the PNGRIDtask, NFMPC with 128 samples outperforms FlowMPPI with 1024 samples while
reducing average runtime by 22%. Similarly, for the FRANKAtask, NFMPC with 64 samples
outperforms FlowMPPI with 1024 samples while reducing average runtime by 43%. And for
both Franka tasks (FRANKA and FRANKAOBSTACLES), NFMPC with 16 samples outperforms
FlowMPPI with 128 samples while reducing average runtime by 8%. As such, there are clear
runtime benefits for NFMPC over both FlowMPPI and MPPI run for additional iterations. Finally,
it is also important to note that we did not perform a hyperparameter sweep on the NF, and it may be
possible to significantly reduce the size of the network while retaining performance benefits.

A.6 Proof for DMD Update of Latent Parameters
Theorem A.1. Consider the optimization problem

0, = ar‘;grgin(’ytgt, 0) + DKL(7T9,>\||7T‘§“)\) 20
c

where we define

Ohy ' 22)

ot
and hy is an invertible, deterministic transformation, pg a Gaussian factorized as in Equation (4),
and 0 is the natural parameters of the Gaussian. Then the corresponding update to the mean of the
latent Gaussian is given by:

o (@c) = po(hx (; c))’det

_1 . 1 ~ -1 Ty, NG 2t5¢))
Y~ ME"Té,/\vA[e ﬂC(w“ut)hA<Ut;c)} Y~ M]Epé’f[e e))z{|
pe = (1=) e+ “Tcaan = (1) e+ T a
A[e 3 mm“t} E A[e 5C(@1,hy " (2¢;0))
LR pg:f
(23)
Proof. First, we note that
gt =VJ(O0;3) = ——= — ; (24)
E A|:€7§C(mt,ut)i|
g a0
and that
N . Ohy
log 5 5 (@]c) = log ps(ha(; c)) + log (‘det 5%) (25)

Therefore, when computing the gradient of Equation (25) with respect to 6, we can drop the log-
determinant term as it does not depend on 6. As such, we are left with the gradient of the latent

20

Gaussian with respect to its natural parameters, or V;log 7 , (@t|c) = Vlog p;(ha(@;c)). Taking
this gradient of the log-likelihood term with respect to the natural parameters, we have:

I I N B
E X {e—%C(@t,a,)}

Wév)\vf

; (26)

gt = —

where ¢; is the expectation parameter corresponding to natural parameter 6 and ¢(+) is the sufficient
statistics of the latent distribution. We can rewrite the expectations in terms of p;(-):

E, ; {6—%0(@&;1(2“@)) (6(2) — ét)]

Pa»

gt =— v @7

o= #C@ehS (2650))
Ei"é’f [e ’ } }
Next, looking at the KL divergence term, we can write:
mo (@)
D i) =E; log ———=
KL(WG,)\ |7T9t,)\) 6,1 l 0og Wét7,\ ’&)]
oh
[(e (4t
T\ Og ~
pg(ha(@; c))%f;)% (28)
(2)
=E,, | log o —
" [py(2)
= Dkr(pollps,)
Then, using Proposition 1 from Wagener et al. [9], we can write the update rule as
~ Epé f|:€_/%C(ﬁzhhil(ét;c)))qs(it)}
be = (1 —7e)be + 1t (29)

E f{e—%C(@t,hgl(st;c))}
Pg.

And when the sufficient statistic is ¢(2;) = (24, 2:2]), then we arrive at the usual MPPI update for
the mean, but now defined in terms of the latent samples:

]Epg, R [67%0(@“’1;1(2”0))24

= (1 ="\t + H 30
pe = (1=98)fe +7; B A[eféc(it,hgl(zt;c))} 30)
Pg:f
which we can equivalently rewrite in terms of 75 , as:
N]
pe = (1=)i + v — TP 31
E A|:e—EC(m,,,ut):|
779"1>\7f
O
A.7 Proof of Approximate Gradient Through MPPI Update
Theorem A.2. Let the MPPI update of the latent mean be given by
~]E”a" &) mf{eiEC(@t’ﬁt)h)‘(ﬁt;C)}
pe(A) = (L=)Be(N) + 7 Ay, Ay = —— T (32)
]E R |:e*§ (th,’Uft):|
”étu),wf
Then the gradient of Ay with respect to X can be approximated as
0A
> ;‘t ~ My — MyMs (33)

21

where

N
= > wi[Vana(@”;) + ha (@) Valog my (@ |e)
1=1

N (34)

N
Zwl (@), M3:Zwiv)\logﬁé()\),)\(ﬁgl”c)'

i=1

Proof. First, we rewrite Ap; = %, where

Z

N\ =E ; [6_%C(it,ﬁz)h)\(ﬁt; c)} D()\) = [e HC(azt,ut)i| (35)

Toe(A)n7 T (A),\0

Then by the quotient rule of calculus, we have
OAp; _ VaN(A) N(A) VD)
ox D\ D(\) D(\)

We can compute each of these individual terms using the likelihood ratio gradients

VAN(A) = e (Tana (s ©) + ha (s €)W log w0, (@17]0)) | 37)

”étu)‘wf

(36)

VyD()) = A[e—%gc 807, 10g M50y (U@\C)} (38)

T »f
9 ()2
Since each of the terms that make up our gradient in Equation (36) are divided by D()), when we
approximate them with Monte Carlo sampling, we can actually write them in terms of the same

weights used by MPPI in the forward pass:

N

VAN (A .
i\)()\()) :;wi [VAhA(UQ ¢) + ha(@";)V log my) (@l)} M, (39a)
N & ,
DOV = Z wihx('&gl); c) =M, (39b)
VaD()\) ;
i\)()\() szvA log g, M@ o) = (39¢)

O
A.8 Sigmoid Flow Layer
We wish to use a sigmoid layer in our normalizing flow to constrain our control sample @ such that

each control along the horizon is between u and u. Since the sigmoid function is invertible, if we
append a sigmoid layer at the end of our flow, we have that

i — b i — b
@ =wo(gx-1)+b <<= GYx_1= a*I(L) = log (71; -)7 (40)
w w—u+0b

where w = @ — w and b = u, the sigmoid and logit functions are applied element-wise, and the
scaling and translation are broadcasted to each element of the vector 4. The derivative of the forward
transformation is given by:

2 (wow) +b) = wola)(1 ~ o(a))

- (1) (41)
14+e 7 14e®

T Uten)(Iter)

Since the sigmoid is applied element-wise, it has a diagonal Jacobian, the log-determinant of which
is simply the sum of the log of its diagonal terms:

MH
’ = Z log(w) —log(1 + e~ ") —log(1 + e*), (42)

lo ’det
& Or -1

22

where we can implement the last two terms with the Softplus activation function. In the reverse

direction, we have that:

;aU(U_l(gc;b>> :xib—’_w—lx—b

Therefore, the log-determinant is given by:

log ‘det 8%2_1 ‘ =- J‘il (log(ﬂi —b) +log(w — 4; — b)),

1=

(43)

(44)

As such, computing the inverse and the log-determinant terms of the Jacobian is efficient and fast in

both directions, adding minimal overhead to the flow.

23

	Introduction
	Sampling-Based Model Predictive Control
	Learning the Sampling Distribution of MPC
	Representation of the Learned Distribution
	Formulating the Learning Problem
	Parameterizing with Normalizing Flows
	Training the Sampling Distribution

	Related Work
	Experimental Results
	Planar Robot Navigation
	Franka Panda Arm

	Limitations
	Conclusion
	Appendix
	Computational Graph Visualization
	Experimental Details
	Additional Planar Navigation Experiments
	Additional Franka Experiments
	Performance Overhead of Normalizing Flow
	Proof for DMD Update of Latent Parameters
	Proof of Approximate Gradient Through MPPI Update
	Sigmoid Flow Layer

